NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sayegh, Fares; Herraiz, Laurie; Colom, Morgane; Lopez, Sébastien; Rampon, Claire; Dahan, Lionel – Learning & Memory, 2022
Dopamine participates in encoding memories and could either encode rewarding/aversive value of unconditioned stimuli or act as a novelty signal triggering contextual learning. Here we show that intraperitoneal injection of the dopamine D1/5R antagonist SCH23390 impairs contextual fear conditioning and tone-shock association, while intrahippocampal…
Descriptors: Cognitive Processes, Memory, Fear, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Kehoe, E. James; Ludvig, Elliot A.; Sutton, Richard S. – Learning & Memory, 2014
The present experiment tested whether or not the time course of a conditioned eyeblink response, particularly its duration, would expand and contract, as the magnitude of the conditioned response (CR) changed massively during acquisition, extinction, and reacquisition. The CR duration remained largely constant throughout the experiment, while CR…
Descriptors: Conditioning, Eye Movements, Responses, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Suter, Eugenie E.; Weiss, Craig; Disterhoft, John F. – Learning & Memory, 2013
The acquisition of temporal associative tasks such as trace eyeblink conditioning is hippocampus-dependent, while consolidated performance is not. The parahippocampal region mediates much of the input and output of the hippocampus, and perirhinal (PER) and entorhinal (EC) cortices support persistent spiking, a possible mediator of temporal…
Descriptors: Eye Movements, Conditioning, Brain, Neurological Impairments
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Alcino J.; Müller, Klaus-Robert – Learning & Memory, 2015
The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…
Descriptors: Molecular Biology, Molecular Structure, Neurosciences, Neurology
Peer reviewed Peer reviewed
Direct linkDirect link
Sakai, Takaomi; Sato, Shoma; Ishimoto, Hiroshi; Kitamoto, Toshihiro – Learning & Memory, 2013
Considerable evidence has demonstrated that transient receptor potential (TRP) channels play vital roles in sensory neurons, mediating responses to various environmental stimuli. In contrast, relatively little is known about how TRP channels exert their effects in the central nervous system to control complex behaviors. This is also true for the…
Descriptors: Neurological Organization, Brain, Pain, Stimuli
Peer reviewed Peer reviewed
Direct linkDirect link
Cole, Sindy; Powell, Daniel J.; Petrovich, Gorica D. – Learning & Memory, 2013
The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a…
Descriptors: Associative Learning, Brain, Neurological Organization, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M. – Learning & Memory, 2012
In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…
Descriptors: Animals, Learning Processes, Human Body, Brain
Peer reviewed Peer reviewed
Direct linkDirect link
Philips, Gary T.; Sherff, Carolyn M.; Menges, Steven A.; Carew, Thomas J. – Learning & Memory, 2011
The defensive withdrawal reflexes of "Aplysia californica" have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have…
Descriptors: Memory, Genetics, Animals, Neurological Organization
Peer reviewed Peer reviewed
Direct linkDirect link
Hegde, Ashok N. – Learning & Memory, 2010
Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…
Descriptors: Investigations, Biology, Anatomy, Brain
Peer reviewed Peer reviewed
Direct linkDirect link
Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland – Learning & Memory, 2012
Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking "Drosophila" flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein…
Descriptors: Recall (Psychology), Behavior, Animals, Brain
Peer reviewed Peer reviewed
Direct linkDirect link
Papper, Marc; Kempter, Richard; Leibold, Christian – Learning & Memory, 2011
Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…
Descriptors: Genetics, Memory, Rewards, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Rueda-Orozco, Pavel E.; Mendoza, Ernesto; Hernandez, Ricardo; Aceves, Jose J.; Ibanez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, Jose – Learning & Memory, 2009
Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term…
Descriptors: Memory, Brain, Inhibition, Neurological Organization
Peer reviewed Peer reviewed
Direct linkDirect link
Martig, Adria K.; Mizumori, Sheri J. Y. – Learning & Memory, 2011
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…
Descriptors: Classical Conditioning, Memory, Brain, Rewards
Peer reviewed Peer reviewed
Direct linkDirect link
Ma, Nan; Abel, Ted; Hernandez, Pepe J. – Learning & Memory, 2009
It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…
Descriptors: Long Term Memory, Brain, Neurological Organization, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Witter, Menno P. – Learning & Memory, 2007
Within the framework of a special issue on CA3, it was deemed relevant to summarize what is known about the extrinsic and intrinsic wiring of CA3 as a basis for other contributions. Here, I have aimed to update already existing excellent reviews on the subject and to raise the issue whether or not the known architecture of the field supports the…
Descriptors: Recall (Psychology), Memory, Neurological Organization, Brain
Previous Page | Next Page »
Pages: 1  |  2