Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 17 |
Descriptor
Associative Learning | 18 |
Genetics | 18 |
Animals | 12 |
Memory | 8 |
Stimuli | 7 |
Entomology | 6 |
Brain | 5 |
Brain Hemisphere Functions | 5 |
Conditioning | 5 |
Olfactory Perception | 5 |
Biochemistry | 4 |
More ▼ |
Source
Learning & Memory | 18 |
Author
Gerber, Bertram | 3 |
Michels, Birgit | 3 |
Abel, Ted | 2 |
Buchner, Erich | 2 |
Saumweber, Timo | 2 |
Tanimoto, Hiromu | 2 |
Agarwal, Isha | 1 |
Agarwala, Usha | 1 |
Aiken, Alastair | 1 |
Amano, Hisayuki | 1 |
Ardiel, Evan L. | 1 |
More ▼ |
Publication Type
Journal Articles | 18 |
Reports - Research | 14 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Bhattacharya, Sriya; Mukherjee, Bandhan; Doré, Jules J. E.; Yuan, Qi; Harley, Carolyn W.; McLean, John H. – Learning & Memory, 2017
Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in…
Descriptors: Long Term Memory, Inhibition, Olfactory Perception, Preferences
Kleber, Jörg; Chen, Yi-Chun; Michels, Birgit; Saumweber, Timo; Schleyer, Michael; Kähne, Thilo; Buchner, Erich; Gerber, Bertram – Learning & Memory, 2016
Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the "Drosophila" genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function…
Descriptors: Associative Learning, Genetics, Scores, Short Term Memory
Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi – Learning & Memory, 2012
Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular…
Descriptors: Animals, Brain, Associative Learning, Memory
Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R. – Learning & Memory, 2013
Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…
Descriptors: Olfactory Perception, Entomology, Biochemistry, Punishment
Michels, Birgit; Chen, Yi-chun; Saumweber, Timo; Mishra, Dushyant; Tanimoto, Hiromu; Schmid, Benjamin; Engmann, Olivia; Gerber, Bertram – Learning & Memory, 2011
Synapsin is an evolutionarily conserved, presynaptic vesicular phosphoprotein. Here, we ask where and how synapsin functions in associative behavioral plasticity. Upon loss or reduction of synapsin in a deletion mutant or via RNAi, respectively, "Drosophila" larvae are impaired in odor-sugar associative learning. Acute global expression of…
Descriptors: Associative Learning, Biochemistry, Genetics, Cytology
Madalan, Adrian; Yang, Xiao; Ferris, Jacob; Zhang, Shixing; Roman, Gregg – Learning & Memory, 2012
Heterotrimeric G(o) is an abundant brain protein required for negatively reinforced short-term associative olfactory memory in "Drosophila". G(o) is the only known substrate of the S1 subunit of pertussis toxin (PTX) in fly, and acute expression of PTX within the mushroom body neurons (MB) induces a reversible deficit in associative olfactory…
Descriptors: Associative Learning, Short Term Memory, Cognitive Processes, Animals
Tabone, Christopher J.; de Belle, J. Steven – Learning & Memory, 2011
Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…
Descriptors: Stimuli, Conditioning, Associative Learning, Memory
Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy – Learning & Memory, 2011
Genetic studies in "Drosophila" have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in "radish" ("rsh") mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways…
Descriptors: Associative Learning, Short Term Memory, Long Term Memory, Cognitive Processes
Ardiel, Evan L.; Rankin, Catharine H. – Learning & Memory, 2010
This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…
Descriptors: Learning, Memory, Animals, Literature Reviews
Amano, Hisayuki; Maruyama, Ichiro N. – Learning & Memory, 2011
The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…
Descriptors: Stimuli, Classical Conditioning, Long Term Memory, Olfactory Perception
Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P. – Learning & Memory, 2010
Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…
Descriptors: Conditioning, Memory, Fear, Brain Hemisphere Functions
Valenzuela-Harrington, Mauricio; Delgado-Garcia, Jose M.; Minichiello, Liliana; Gruart, Agnes; Sciarretta, Carla – Learning & Memory, 2007
Previous in vitro studies have characterized the electrophysiological properties and molecular events associated with long-term potentiation (LTP), but as yet there are no in vivo data from molecular-level dissection that directly identify LTP as the biological substrate for learning and memory. Understanding whether the molecular pathways…
Descriptors: Associative Learning, Eye Movements, Genetics, Memory
Steidle, Johannes L. M.; Collatz, Jana; Muller, Caroline – Learning & Memory, 2006
Protein synthesis-dependent long-term memory in Apis mellifera and Drosophila melanogaster is formed after multiple trainings that are spaced in time. The parasitic wasp Lariophagus distinguendus remarkably differs from these species. It significantly responds to the artificial odor furfurylheptanoate (FFH) in olfactometer experiments, when this…
Descriptors: Associative Learning, Long Term Memory, Training, Genetics
Kerfoot, Erin C.; Agarwal, Isha; Lee, Hongjoo J.; Holland, Peter C. – Learning & Memory, 2007
Through associative learning, cues for biologically significant reinforcers such as food may gain access to mental representations of those reinforcers. Here, we used devaluation procedures, behavioral assessment of hedonic taste-reactivity responses, and measurement of immediate-early gene (IEG) expression to show that a cue for food engages…
Descriptors: Cues, Behavioral Science Research, Memory, Brain
Michels, Birgit; Diegelmann, Soren; Tanimoto, Hiromu; Schwenkert, Isabell; Buchner, Erich; Gerber, Bertram – Learning & Memory, 2005
Synapsins are evolutionarily conserved, highly abundant vesicular phosphoproteins in presynaptic terminals. They are thought to regulate the recruitment of synaptic vesicles from the reserve pool to the readily-releasable pool, in particular when vesicle release is to be maintained at high spiking rates. As regulation of transmitter release is a…
Descriptors: Animals, Associative Learning, Role, Neurology
Previous Page | Next Page »
Pages: 1 | 2