Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 71 |
Descriptor
Brain | 85 |
Learning Processes | 85 |
Animals | 52 |
Memory | 48 |
Fear | 32 |
Conditioning | 28 |
Neurological Organization | 24 |
Biochemistry | 21 |
Experiments | 14 |
Genetics | 14 |
Neurology | 14 |
More ▼ |
Source
Learning & Memory | 85 |
Author
Davis, Michael | 3 |
Kandel, Eric R. | 3 |
Knapska, Ewelina | 3 |
Lee, Inah | 3 |
Bourtchouladze, Rusiko | 2 |
Fanselow, Michael S. | 2 |
Kaczmarek, Leszek | 2 |
Lipp, Hans-Peter | 2 |
Maren, Stephen | 2 |
Nader, Karim | 2 |
Shors, Tracey J. | 2 |
More ▼ |
Publication Type
Journal Articles | 85 |
Reports - Research | 69 |
Reports - Evaluative | 8 |
Reports - Descriptive | 7 |
Information Analyses | 1 |
Opinion Papers | 1 |
Education Level
Higher Education | 3 |
Audience
Location
Australia | 1 |
California | 1 |
Canada | 1 |
Spain | 1 |
Laws, Policies, & Programs
Assessments and Surveys
California Verbal Learning… | 1 |
What Works Clearinghouse Rating
Taylor, William W.; Imhoff, Barry R.; Sathi, Zakia Sultana; Liu, Wei Y.; Garza, Kristie M.; Dias, Brian G. – Learning & Memory, 2021
Dysfunctions in memory recall lead to pathological fear; a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). Both, heightened recall of an association between a cue and trauma, as well as impoverished recall that a previously trauma-related cue is no longer a threat, result in a debilitating fear toward the cue.…
Descriptors: Brain, Memory, Recall (Psychology), Brain Hemisphere Functions
Trent, Simon; Barnes, Philip; Hall, Jeremy; Thomas, Kerrie L. – Learning & Memory, 2017
Activity-regulated cytoskeleton-associated protein (Arc) supports fear memory through synaptic plasticity events requiring actin cytoskeleton rearrangements. We have previously shown that reducing hippocampal Arc levels through antisense knockdown leads to the premature extinction of contextual fear. Here we show that the AMPA receptor antagonist…
Descriptors: Fear, Memory, Learning Processes, Brain
Marchal, Paul; Villar, Maria Eugenia; Geng, Haiyang; Arrufat, Patrick; Combe, Maud; Viola, Haydée; Massou, Isabelle; Giurfa, Martin – Learning & Memory, 2019
Honeybees are a standard model for the study of appetitive learning and memory. Yet, fewer attempts have been performed to characterize aversive learning and memory in this insect and uncover its molecular underpinnings. Here, we took advantage of the positive phototactic behavior of bees kept away from the hive in a dark environment and…
Descriptors: Inhibition, Learning Processes, Memory, Molecular Structure
Garcia, René – Learning & Memory, 2017
Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized…
Descriptors: Neurology, Brain, Biology, Fear
Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos – Learning & Memory, 2016
In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when…
Descriptors: Drug Use, Biochemistry, Learning Processes, Memory
Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim – Learning & Memory, 2017
The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…
Descriptors: Brain, Brain Hemisphere Functions, Animals, Long Term Memory
Bisby, Madelyne A.; Baker, Kathryn D.; Richardson, Rick – Learning & Memory, 2018
NMDA receptors (NMDARs) are considered critical for the consolidation of extinction but recent work challenges this assumption. Namely, NMDARs are not required for extinction retention in infant rats as well as when extinction training occurs for a second time (i.e., reextinction) in adult rats. In this study, a possible third instance of…
Descriptors: Fear, Learning Processes, Conditioning, Brain
Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B.; Devaud, Jean-Marc – Learning & Memory, 2017
The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an…
Descriptors: Entomology, Young Adults, Olfactory Perception, Learning Processes
Chen Han-Ting; Chen, Jin-Chung – Learning & Memory, 2015
The molecular mechanisms underlying drug extinction remain largely unknown, although a role for medial prefrontal cortex (mPFC) glutamate neurons has been suggested. Considering that the mPFC sends glutamate efferents to the ventral tegmental area (VTA), we tested whether the VTA is involved in methamphetamine (METH) extinction via conditioned…
Descriptors: Stimulants, Brain, Conditioning, Learning Processes
Goode, Travis D.; Maren, Stephen – Learning & Memory, 2017
Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the "affective…
Descriptors: Learning Processes, Fear, Brain, Neurology
Pu, Lu; Kopec, Ashley M.; Boyle, Heather D.; Carew, Thomas J. – Learning & Memory, 2014
Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in "Aplysia" showed that a TrkB ligand is required for MAPK…
Descriptors: Brain, Memory, Learning Processes, Neurological Organization
Stafford, James M.; Maughan, DeeAnna K.; Ilioi, Elena C.; Lattal, K. Matthew – Learning & Memory, 2013
An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This…
Descriptors: Memory, Fear, Learning Processes, Brain
Giese, Karl Peter; Mizuno, Keiko – Learning & Memory, 2013
In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…
Descriptors: Learning, Memory, Biochemistry, Brain
Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J.; Nomura, Toshihiro; Stauffer, Shaun R.; Lindsley, Craig W.; Conn, P. Jeffrey; Contractor, Anis – Learning & Memory, 2013
Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5…
Descriptors: Animals, Brain, Biochemistry, Learning
Blouin, Ashley M.; Han, Sungho; Pearce, Anne M.; Cheng, KaiLun; Lee, JongAh J.; Johnson, Alexander W.; Wang, Chuansong; During, Matthew J.; Holland, Peter C.; Shaham, Yavin; Baraban, Jay M.; Reti, Irving M. – Learning & Memory, 2013
Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus…
Descriptors: Brain, Animals, Learning Processes, Narcotics