NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Skurnick, Ronald – Mathematics and Computer Education, 2011
This classroom note is presented as a suggested exercise--not to have the class prove or disprove Goldbach's Conjecture, but to stimulate student discussions in the classroom regarding proof, as well as necessary, sufficient, satisfied, and unsatisfied conditions. Goldbach's Conjecture is one of the oldest unsolved problems in the field of number…
Descriptors: Mathematical Formulas, Numbers, Number Concepts, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Skurnick, Ronald – Mathematics and Computer Education, 2007
The Pythagorean Theorem, arguably one of the best-known results in mathematics, states that a triangle is a right triangle if and only if the sum of the squares of the lengths of two of its sides equals the square of the length of its third side. Closely associated with the Pythagorean Theorem is the concept of Pythagorean triples. A "Pythagorean…
Descriptors: Geometric Concepts, Arithmetic, Number Concepts, Mathematical Formulas
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2006
The sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., known as Fibonacci sequence, has a long history and special importance in mathematics. This sequence came about as a solution to the famous rabbits' problem posed by Fibonacci in his landmark book, "Liber abaci" (1202). If the "n"th term of Fibonacci sequence is denoted by [f][subscript n], then it may…
Descriptors: Mathematical Concepts, History, Mathematics, Problem Solving
Peer reviewed Peer reviewed
Simmonds, Gail – Mathematics and Computer Education, 1982
Results obtained from investigating number properties are discussed, along with six points that are felt, in general, to be the ingredients necessary for a successful learning experience. Two programs written in BASIC designed to aid in aspects of Number Theory are included. (MP)
Descriptors: College Mathematics, Computer Programs, Higher Education, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2005
A triple (x,y,z) of natural numbers is called a Primitive Pythagorean Triple (PPT) if it satisfies two conditions: (1) x[squared] + y[squared] = z[squared]; and (2) x, y, and z have no common factor other than one. All the PPT's are given by the parametric equations: (1) x = m[squared] - n[squared]; (2) y = 2mn; and (3) z = m[squared] +…
Descriptors: Geometric Concepts, Equations (Mathematics), Mathematical Concepts, Problem Solving