Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Computer Software | 4 |
Item Response Theory | 4 |
Monte Carlo Methods | 4 |
Bayesian Statistics | 2 |
Goodness of Fit | 2 |
Models | 2 |
Sample Size | 2 |
Test Length | 2 |
Accuracy | 1 |
Algorithms | 1 |
Comparative Analysis | 1 |
More ▼ |
Source
Measurement:… | 4 |
Author
Ames, Allison J. | 2 |
Leventhal, Brian C. | 2 |
Au, Chi Hang | 1 |
Ezike, Nnamdi C. | 1 |
Kalkan, Ömür Kaya | 1 |
Stone, Clement A. | 1 |
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Leventhal, Brian C.; Stone, Clement A. – Measurement: Interdisciplinary Research and Perspectives, 2018
Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Psychometrics
Ames, Allison J.; Au, Chi Hang – Measurement: Interdisciplinary Research and Perspectives, 2018
Stan is a flexible probabilistic programming language providing full Bayesian inference through Hamiltonian Monte Carlo algorithms. The benefits of Hamiltonian Monte Carlo include improved efficiency and faster inference, when compared to other MCMC software implementations. Users can interface with Stan through a variety of computing…
Descriptors: Item Response Theory, Computer Software Evaluation, Computer Software, Programming Languages