Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 8 |
Descriptor
Source
Measurement:… | 8 |
Author
Engelhard, George, Jr. | 2 |
Guyon, Hervé | 2 |
Tensaout, Mouloud | 2 |
Wang, Jue | 2 |
Aguirre-Urreta, Miguel I. | 1 |
Chamberlain, Laura | 1 |
Lee, Nick | 1 |
Lu, Zhenqiu | 1 |
Marakas, George M. | 1 |
Markus, Keith A. | 1 |
Rönkkö, Mikko | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Evaluative | 7 |
Opinion Papers | 6 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lee, Nick; Chamberlain, Laura – Measurement: Interdisciplinary Research and Perspectives, 2016
Aguirre-Urreta, Rönkkö, and Marakas' (2016) paper in "Measurement: Interdisciplinary Research and Perspectives" (hereafter referred to as ARM2016) is an important and timely piece of scholarship, in that it provides strong analytic support to the growing theoretical literature that questions the underlying ideas behind causal and…
Descriptors: Measurement, Causal Models, Formative Evaluation, Evaluation Methods
Wang, Jue; Engelhard, George, Jr. – Measurement: Interdisciplinary Research and Perspectives, 2016
The authors of the focus article describe an important issue related to the use and interpretation of causal indicators within the context of structural equation modeling (SEM). In the focus article, the authors illustrate with simulated data the effects of omitting a causal indicator. Since SEMs are used extensively in the social and behavioral…
Descriptors: Structural Equation Models, Measurement, Causal Models, Construct Validity
Markus, Keith A. – Measurement: Interdisciplinary Research and Perspectives, 2014
In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…
Descriptors: Measurement, Structural Equation Models, Statistical Analysis, Causal Models
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2015
This article is a commentary on the Focus Article, "Interpretational Confounding or Confounded Interpretations of Causal Indicators?" and a commentary that was published in issue 12(4) 2014 of "Measurement: Interdisciplinary Research & Perspectives". The authors challenge two claims: (a) Bainter and Bollen argue that the…
Descriptors: Causal Models, Measurement, Data Interpretation, Structural Equation Models
Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M. – Measurement: Interdisciplinary Research and Perspectives, 2016
One of the central assumptions of the causal-indicator literature is that all causal indicators must be included in the research model and that the exclusion of one or more relevant causal indicators would have severe negative consequences by altering the meaning of the latent variable. In this research we show that the omission of a relevant…
Descriptors: Causal Models, Measurement, Research Problems, Structural Equation Models
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Wang, Jue; Engelhard, George, Jr.; Lu, Zhenqiu – Measurement: Interdisciplinary Research and Perspectives, 2014
The authors of the focus article in this issue have emphasized the continuing confusion among some researchers regarding various indicators used in structural equation models (SEMs). Their major claim is that causal indicators are not inherently unstable, and even if they are unstable they are at least not more unstable than other types of…
Descriptors: Structural Equation Models, Measurement, Statistical Analysis, Causal Models
Widaman, Keith F. – Measurement: Interdisciplinary Research and Perspectives, 2014
Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…
Descriptors: Structural Equation Models, Predictor Variables, Educational Research, Causal Models