NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)19
Source
Multivariate Behavioral…46
Publication Type
Journal Articles46
Reports - Descriptive46
Opinion Papers1
Speeches/Meeting Papers1
Audience
Researchers1
Location
Italy1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 46 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Reise, Steven P. – Multivariate Behavioral Research, 2012
Bifactor latent structures were introduced over 70 years ago, but only recently has bifactor modeling been rediscovered as an effective approach to modeling "construct-relevant" multidimensionality in a set of ordered categorical item responses. I begin by describing the Schmid-Leiman bifactor procedure (Schmid & Leiman, 1957) and highlight its…
Descriptors: Models, Factor Structure, Factor Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl – Multivariate Behavioral Research, 2011
The standardization of loadings gives a metric to the corresponding latent variable and thus scales the variance of this latent variable. By assigning an appropriately estimated weight to all the loadings on the same latent variable it can be achieved that the average squared loading is 1 as the result of standardization. As a consequence, there…
Descriptors: Structural Equation Models, Short Term Memory, Evaluation Methods, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Selig, James P.; Preacher, Kristopher J.; Little, Todd D. – Multivariate Behavioral Research, 2012
We describe a straightforward, yet novel, approach to examine time-dependent association between variables. The approach relies on a measurement-lag research design in conjunction with statistical interaction models. We base arguments in favor of this approach on the potential for better understanding the associations between variables by…
Descriptors: Models, Longitudinal Studies, Time, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Varriale, Roberta; Vermunt, Jeroen K. – Multivariate Behavioral Research, 2012
Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…
Descriptors: Factor Analysis, Models, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
de Rooij, Mark; Schouteden, Martijn – Multivariate Behavioral Research, 2012
Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…
Descriptors: Statistical Analysis, Longitudinal Studies, Data, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Lijuan; Grimm, Kevin J. – Multivariate Behavioral Research, 2012
Reliabilities of the two most widely used intraindividual variability indicators, "ISD[superscript 2]" and "ISD", are derived analytically. Both are functions of the sizes of the first and second moments of true intraindividual variability, the size of the measurement error variance, and the number of assessments within a burst. For comparison,…
Descriptors: Reliability, Statistical Analysis, Measurement, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Peer reviewed Peer reviewed
Direct linkDirect link
Shrout, Patrick E. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and…
Descriptors: Causal Models, Psychopathology, Peer Mediation, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Beckstead, Jason W. – Multivariate Behavioral Research, 2012
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…
Descriptors: Multiple Regression Analysis, Predictor Variables, Factor Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Halpin, Peter F.; Maraun, Michael D. – Multivariate Behavioral Research, 2010
A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…
Descriptors: Models, Selection, Vocational Evaluation, Developmental Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Long, Jeffrey D.; Loeber, Rolf; Farrington, David P. – Multivariate Behavioral Research, 2009
Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides…
Descriptors: Computation, Inferences, Crime, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Chow, Sy-Miin; Ferrer, Emilio; Nesselroade, John R. – Multivariate Behavioral Research, 2007
In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways:…
Descriptors: Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
du Toit, Stephen H. C.; Browne, Michael W. – Multivariate Behavioral Research, 2007
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
Descriptors: Structural Equation Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko – Multivariate Behavioral Research, 2007
A method for point and interval estimation of change in criterion validity of multiple-component measuring instruments as a result of revision is outlined. The procedure is developed within the framework of covariance structure modeling, which complements earlier methods for testing change in composite reliability due to addition or deletion of…
Descriptors: Predictive Validity, Computation, Models, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
van Rosmalen, Joost; Koning, Alex J.; Groenen, Patrick J. F. – Multivariate Behavioral Research, 2009
Multiplicative interaction models, such as Goodman's (1981) RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are suitable only for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of…
Descriptors: Class Size, Scaling, Predictor Variables, Models
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4