Descriptor
Source
Multivariate Behavioral… | 5 |
Author
Curran, Patrick J. | 2 |
Bauer, Daniel J. | 1 |
Jaccard, James | 1 |
Marcoulides, George, A. | 1 |
Medoff, Deborah R. | 1 |
Mills, Jamie, D. | 1 |
O'Grady, Kevin E. | 1 |
Olejnik, Stephen, F. | 1 |
Publication Type
Journal Articles | 5 |
Reports - Evaluative | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Jaccard, James; And Others – Multivariate Behavioral Research, 1990
Issues in the detection and interpretation of interaction effects between quantitative variables in multiple regression analysis are discussed. Recent discussions associated with problems of multicollinearity are reviewed in the context of the conditional nature of multiple regression with product terms. (TJH)
Descriptors: Equations (Mathematics), Mathematical Models, Multiple Regression Analysis
Curran, Patrick J. – Multivariate Behavioral Research, 2003
A core assumption of the standard multiple regression model is independence of residuals, the violation of which results in biased standard errors and test statistics. The structural equation model (SEM) generalizes the regression model in several key ways, but the SEM also assumes independence of residuals. The multilevel model (MLM) was…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Observation, Mathematical Models

O'Grady, Kevin E.; Medoff, Deborah R. – Multivariate Behavioral Research, 1988
Limitations of dummy coding and nonsense coding as methods of coding categorical variables for use as predictors in multiple regression analysis are discussed. The combination of these approaches often yields estimates and tests of significance that are not intended by researchers for inclusion in their models. (SLD)
Descriptors: Multiple Regression Analysis, Predictive Measurement, Regression (Statistics), Research Problems
Bauer, Daniel J.; Curran, Patrick J. – Multivariate Behavioral Research, 2005
Many important research hypotheses concern conditional relations in which the effect of one predictor varies with the value of another. Such relations are commonly evaluated as multiplicative interactions and can be tested in both fixed-and random-effects regression. Often, these interactive effects must be further probed to fully explicate the…
Descriptors: Research Methodology, Predictor Variables, Hypothesis Testing, Methods Research
Mills, Jamie, D.; Olejnik, Stephen, F.; Marcoulides, George, A. – Multivariate Behavioral Research, 2005
The effectiveness of the Tabu variable selection algorithm, to identify predictor variables related to a criterion variable, is compared with the stepwise variable selection method and the all possible regression approach. Considering results obtained from previous research, Tabu is more successful in identifying relevant variables than the…
Descriptors: Predictor Variables, Multiple Regression Analysis, Behavioral Science Research, Evaluation Criteria