Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 7 |
Descriptor
Bayesian Statistics | 9 |
Simulation | 9 |
Computation | 7 |
Models | 7 |
Data | 2 |
Evaluation Methods | 2 |
Factor Analysis | 2 |
Markov Processes | 2 |
Monte Carlo Methods | 2 |
Multivariate Analysis | 2 |
Structural Equation Models | 2 |
More ▼ |
Source
Multivariate Behavioral… | 9 |
Author
Bijmolt, Tammo H. A. | 1 |
Ferrer, Emilio | 1 |
Gross, Alan L. | 1 |
Hung, Lai-Fa | 1 |
Kelava, Augustin | 1 |
Klugkist, Irene | 1 |
Lee, Sik-Yum | 1 |
Nagengast, Benjamin | 1 |
Nesselroade, John R. | 1 |
Poon, Wai-Yin | 1 |
Song, Hairong | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 6 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Belgium | 1 |
France | 1 |
Netherlands | 1 |
Portugal | 1 |
Spain | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
de Leeuw, Christiaan; Klugkist, Irene – Multivariate Behavioral Research, 2012
In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…
Descriptors: Data, Multiple Regression Analysis, Bayesian Statistics, Models
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Kelava, Augustin; Nagengast, Benjamin – Multivariate Behavioral Research, 2012
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Descriptors: Bayesian Statistics, Computation, Structural Equation Models, Predictor Variables
Hung, Lai-Fa – Multivariate Behavioral Research, 2010
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
Descriptors: Longitudinal Studies, Data, Models, Markov Processes

Poon, Wai-Yin; Tang, Fung-Chu – Multivariate Behavioral Research, 2002
Studied a multiple group model with ordinal categorical observed variables that are manifestations of underlying normal variables. Proposed to apply across-group stochastic constraints on thresholds to identify the model and used a Bayesian approach to analyze the model. Simulation findings and the analysis of a real data set show the usefulness…
Descriptors: Bayesian Statistics, Models, Multivariate Analysis, Simulation

Gross, Alan L. – Multivariate Behavioral Research, 2000
Presents a Bayesian method for obtaining an interval estimate of the population squared multiple correlation from an incomplete multivariate normal data set. Estimates were constructed using Gibbs sampling. Simulation studies indicate that the method can yield accurate interval estimates of the population squared multiple correlation. (SLD)
Descriptors: Bayesian Statistics, Correlation, Estimation (Mathematics), Simulation
Zhang, Zhiyong; Nesselroade, John R. – Multivariate Behavioral Research, 2007
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Descriptors: Bayesian Statistics, Computation, Simulation, Behavioral Science Research
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods