NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Gottschall, Amanda C.; West, Stephen G.; Enders, Craig K. – Multivariate Behavioral Research, 2012
Behavioral science researchers routinely use scale scores that sum or average a set of questionnaire items to address their substantive questions. A researcher applying multiple imputation to incomplete questionnaire data can either impute the incomplete items prior to computing scale scores or impute the scale scores directly from other scale…
Descriptors: Questionnaires, Data Analysis, Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A. – Multivariate Behavioral Research, 2009
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Descriptors: Sample Size, Factor Analysis, Enrollment, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Maraun, Michael D.; Slaney, Kathleen – Multivariate Behavioral Research, 2005
MAXCOV-HITMAX was invented by Paul Meehl as a tool for the detection of latent taxonic structures (i.e., structures in which the latent variable, u, is not continuously, but rather Bernoulli, distributed). It involves the examination of the shape of a certain conditional covariance function and is based on Meehl's claims that (R1) Taxonic…
Descriptors: Multivariate Analysis, Hypothesis Testing, Monte Carlo Methods, Behavioral Science Research
Peer reviewed Peer reviewed
Blair, R. Clifford; And Others – Multivariate Behavioral Research, 1994
Multivariate permutation tests are described, and some are suggested as substitutions for Hotelling's one-sample T2 test in common situations in behavioral science research. A Monte Carlo study shows advantages of these tests when the T2 test fails or is suspect. (SLD)
Descriptors: Behavioral Science Research, Correlation, Graphs, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Multivariate Behavioral Research, 2003
Repeated measures and longitudinal studies arise often in social and behavioral science research. During the planning stage of such studies, the calculations of sample size are of particular interest to the investigators and should be an integral part of the research projects. In this article, we consider the power and sample size calculations for…
Descriptors: Comparative Analysis, Behavioral Science Research, Monte Carlo Methods, Longitudinal Studies