Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 13 |
Descriptor
Correlation | 47 |
Factor Analysis | 47 |
Matrices | 16 |
Comparative Analysis | 11 |
Statistical Analysis | 10 |
Factor Structure | 9 |
Mathematical Models | 6 |
Models | 6 |
Multivariate Analysis | 6 |
Orthogonal Rotation | 6 |
Personality Traits | 6 |
More ▼ |
Source
Multivariate Behavioral… | 47 |
Author
Publication Type
Journal Articles | 33 |
Reports - Research | 14 |
Reports - Evaluative | 11 |
Reports - Descriptive | 7 |
Education Level
Higher Education | 2 |
Postsecondary Education | 1 |
Audience
Location
Australia | 1 |
China | 1 |
United Kingdom (Great Britain) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Adult Intelligence… | 2 |
British Household Panel Survey | 1 |
California Psychological… | 1 |
Center for Epidemiologic… | 1 |
Inventory of Interpersonal… | 1 |
Sensation Seeking Scale | 1 |
What Works Clearinghouse Rating
Gignac, Gilles E.; Watkins, Marley W. – Multivariate Behavioral Research, 2013
Previous confirmatory factor analytic research that has examined the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) has endorsed either higher order models or oblique factor models that tend to amalgamate both general factor and index factor sources of systematic variance. An alternative model that has not yet…
Descriptors: Intelligence Tests, Test Reliability, Factor Structure, Models
Ferrari, Pier Alda; Barbiero, Alessandro – Multivariate Behavioral Research, 2012
The increasing use of ordinal variables in different fields has led to the introduction of new statistical methods for their analysis. The performance of these methods needs to be investigated under a number of experimental conditions. Procedures to simulate from ordinal variables are then required. In this article, we deal with simulation from…
Descriptors: Data, Statistical Analysis, Sampling, Simulation
Sass, Daniel A.; Schmitt, Thomas A. – Multivariate Behavioral Research, 2010
Exploratory factor analysis (EFA) is a commonly used statistical technique for examining the relationships between variables (e.g., items) and the factors (e.g., latent traits) they depict. There are several decisions that must be made when using EFA, with one of the more important being choice of the rotation criterion. This selection can be…
Descriptors: Factor Analysis, Criteria, Factor Structure, Correlation
Reise, Steven P. – Multivariate Behavioral Research, 2012
Bifactor latent structures were introduced over 70 years ago, but only recently has bifactor modeling been rediscovered as an effective approach to modeling "construct-relevant" multidimensionality in a set of ordered categorical item responses. I begin by describing the Schmid-Leiman bifactor procedure (Schmid & Leiman, 1957) and highlight its…
Descriptors: Models, Factor Structure, Factor Analysis, Correlation
Salgueiro, M. Fatima; Smith, Peter W. F.; McDonald, John W. – Multivariate Behavioral Research, 2010
Connections between graphical Gaussian models and classical single-factor models are obtained by parameterizing the single-factor model as a graphical Gaussian model. Models are represented by independence graphs, and associations between each manifest variable and the latent factor are measured by factor partial correlations. Power calculations…
Descriptors: Models, Graphs, Factor Analysis, Correlation
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Beckstead, Jason W. – Multivariate Behavioral Research, 2012
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…
Descriptors: Multiple Regression Analysis, Predictor Variables, Factor Analysis, Structural Equation Models
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong – Multivariate Behavioral Research, 2010
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
Descriptors: Intervals, Sample Size, Factor Analysis, Least Squares Statistics
Molenaar, Peter C. M.; Nesselroade, John R. – Multivariate Behavioral Research, 2009
It seems that just when we are about to lay P-technique factor analysis finally to rest as obsolete because of newer, more sophisticated multivariate time-series models using latent variables--dynamic factor models--it rears its head to inform us that an obituary may be premature. We present the results of some simulations demonstrating that even…
Descriptors: Factor Analysis, Multivariate Analysis, Simulation, Affective Behavior
Leite, Walter L.; Cooper, Lou Ann – Multivariate Behavioral Research, 2010
Based on the conceptualization that social desirable bias (SDB) is a discrete event resulting from an interaction between a scale's items, the testing situation, and the respondent's latent trait on a social desirability factor, we present a method that makes use of factor mixture models to identify which examinees are most likely to provide…
Descriptors: Social Desirability, Measures (Individuals), Item Response Theory, Factor Analysis
Roesch, Scott C.; Aldridge, Arianna A.; Stocking, Stephanie N.; Villodas, Feion; Leung, Queenie; Bartley, Carrie E.; Black, Lisa J. – Multivariate Behavioral Research, 2010
This study used multilevel modeling of daily diary data to model within-person (state) and between-person (trait) components of coping variables. This application included the introduction of multilevel factor analysis (MFA) and a comparison of the predictive ability of these trait/state factors. Daily diary data were collected on a large (n =…
Descriptors: Structural Equation Models, Coping, Factor Analysis, Correlation
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A. – Multivariate Behavioral Research, 2009
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Descriptors: Sample Size, Factor Analysis, Enrollment, Evaluation Methods

Nicewander, W. Alan – Multivariate Behavioral Research, 1974
Descriptors: Correlation, Factor Analysis, Matrices, Statistics

Kaiser, Henry F. – Multivariate Behavioral Research, 1974
A desirable property of the equamax criterion for analytic rotation in factor analysis is presented. (Author)
Descriptors: Correlation, Factor Analysis, Matrices, Orthogonal Rotation

McDonald, Roderick P. – Multivariate Behavioral Research, 1978
Extension analysis allows for the investigation of relationships between factors from a core set of variables and the variables from an additional, extension set. This frequently results in obtaining negative residual variances, called Heywood cases. Procedures for checking for that problem are presented here. (Author/JKS)
Descriptors: Correlation, Factor Analysis, Goodness of Fit