Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 17 |
Descriptor
Source
Multivariate Behavioral… | 30 |
Author
Ferrer, Emilio | 2 |
Green, Samuel B. | 2 |
Kaplan, David | 2 |
Lee, Sik-Yum | 2 |
MacCallum, Robert C. | 2 |
Song, Xin-Yuan | 2 |
Steele, Joel S. | 2 |
West, Stephen G. | 2 |
Aiken, Leona S. | 1 |
Asparouhov, Tihomir | 1 |
Babyak, Michael A. | 1 |
More ▼ |
Publication Type
Journal Articles | 30 |
Reports - Research | 14 |
Reports - Evaluative | 9 |
Reports - Descriptive | 5 |
Opinion Papers | 3 |
Education Level
Secondary Education | 2 |
Adult Education | 1 |
Elementary Education | 1 |
Grade 10 | 1 |
Grade 5 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
More ▼ |
Audience
Researchers | 1 |
Location
Germany | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Armed Services Vocational… | 1 |
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
We examine emotion self-regulation and coregulation in romantic couples using daily self-reports of positive and negative affect. We fit these data using a damped linear oscillator model specified as a latent differential equation to investigate affect dynamics at the individual level and coupled influences for the 2 partners in each couple.…
Descriptors: Affective Behavior, Calculus, Models, Females
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S. – Multivariate Behavioral Research, 2012
A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…
Descriptors: Monte Carlo Methods, Computation, Robustness (Statistics), Structural Equation Models
Tong, Xin; Zhang, Zhiyong – Multivariate Behavioral Research, 2012
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
Descriptors: Models, Robustness (Statistics), Statistical Analysis, Error of Measurement
Marsh, Herbert W.; Ludtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt; Nagengast, Benjamin – Multivariate Behavioral Research, 2009
This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2)…
Descriptors: Educational Environment, Context Effect, Models, Structural Equation Models
Halpin, Peter F.; Maraun, Michael D. – Multivariate Behavioral Research, 2010
A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…
Descriptors: Models, Selection, Vocational Evaluation, Developmental Psychology
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria – Multivariate Behavioral Research, 2010
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years…
Descriptors: Computation, Intervals, Models, Monte Carlo Methods
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Maydeu-Olivares, Alberto; Brown, Anna – Multivariate Behavioral Research, 2010
The comparative format used in ranking and paired comparisons tasks can significantly reduce the impact of uniform response biases typically associated with rating scales. Thurstone's (1927, 1931) model provides a powerful framework for modeling comparative data such as paired comparisons and rankings. Although Thurstonian models are generally…
Descriptors: Item Response Theory, Rating Scales, Models, Comparative Analysis
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S. – Multivariate Behavioral Research, 2008
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
Descriptors: Calculus, Models, Longitudinal Studies, Psychological Studies
Culpepper, Steven Andrew – Multivariate Behavioral Research, 2009
This study linked nonlinear profile analysis (NPA) of dichotomous responses with an existing family of item response theory models and generalized latent variable models (GLVM). The NPA method offers several benefits over previous internal profile analysis methods: (a) NPA is estimated with maximum likelihood in a GLVM framework rather than…
Descriptors: Profiles, Item Response Theory, Models, Maximum Likelihood Statistics
Schluchter, Mark D. – Multivariate Behavioral Research, 2008
In behavioral research, interest is often in examining the degree to which the effect of an independent variable X on an outcome Y is mediated by an intermediary or mediator variable M. This article illustrates how generalized estimating equations (GEE) modeling can be used to estimate the indirect or mediated effect, defined as the amount by…
Descriptors: Intervals, Predictor Variables, Equations (Mathematics), Computation
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods

Babyak, Michael A.; Green, Samuel B. – Multivariate Behavioral Research, 1997
Contrasting positions about the evaluation of multiple tests of constraints and control of Type I errors in structural equation modeling (SEM) are presented. It is argued that researchers should consider controlling for Type I errors in evaluating multiple tests of constraints for other than exploratory analyses. (SLD)
Descriptors: Error of Measurement, Structural Equation Models
Previous Page | Next Page ยป
Pages: 1 | 2