NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Multivariate Behavioral…3
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Everitt, B. S. – Multivariate Behavioral Research, 1984
Latent class analysis is formulated as a problem of estimating parameters in a finite mixture distribution. The EM algorithm is used to find the maximum likelihood estimates, and the case of categorical variables with more than two categories is considered. (Author)
Descriptors: Algorithms, Estimation (Mathematics), Mathematical Models, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
McDonald, Roderick P.; Hartmann, Wolfgang M. – Multivariate Behavioral Research, 1992
An algorithm for obtaining initial values for the minimization process in covariance structure analysis is developed that is more generally applicable for computing parameters connected to latent variables than the currently existing ones. The algorithm is formulated in terms of the RAM model but can be extended. (SLD)
Descriptors: Algorithms, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Schweizer, Karl – Multivariate Behavioral Research, 1991
A mathematical formula is introduced for the effect of integrating data. A method is then derived to eliminate the effect from correlations of variables, including mean composites, thus allowing for a clustering algorithm that requires allocation of variables according to the magnitude of their correlations. Examples illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Computer Simulation