Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 7 |
Descriptor
Behavioral Science Research | 8 |
Evaluation Methods | 8 |
Simulation | 6 |
Computation | 5 |
Factor Analysis | 4 |
Goodness of Fit | 3 |
Monte Carlo Methods | 3 |
Correlation | 2 |
Data Analysis | 2 |
Equations (Mathematics) | 2 |
Error of Measurement | 2 |
More ▼ |
Source
Multivariate Behavioral… | 8 |
Author
Conijn, Judith M. | 1 |
Dodou, D. | 1 |
Edwards, Michael C. | 1 |
Emons, Wilco H. M. | 1 |
Kiers, Henk A. L. | 1 |
Lee, Chun-Ting | 1 |
Lee, Sik-Yum | 1 |
Lorenzo-Seva, Urbano | 1 |
Nesselroade, John R. | 1 |
Penev, Spiridon | 1 |
Raykov, Tenko | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 6 |
Reports - Descriptive | 2 |
Education Level
Higher Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L. – Multivariate Behavioral Research, 2011
A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…
Descriptors: Simulation, Research Methodology, Factor Analysis, Item Response Theory
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A. – Multivariate Behavioral Research, 2009
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Descriptors: Sample Size, Factor Analysis, Enrollment, Evaluation Methods
Penev, Spiridon; Raykov, Tenko – Multivariate Behavioral Research, 2006
A linear combination of a set of measures is often sought as an overall score summarizing subject performance. The weights in this composite can be selected to maximize its reliability or to maximize its validity, and the optimal choice of weights is in general not the same for these two optimality criteria. We explore several relationships…
Descriptors: Behavioral Science Research, Reliability, Validity, Evaluation Methods
Zhang, Zhiyong; Nesselroade, John R. – Multivariate Behavioral Research, 2007
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Descriptors: Bayesian Statistics, Computation, Simulation, Behavioral Science Research
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2005
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Descriptors: Structural Equation Models, Simulation, Computation, Error of Measurement