NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L. – Multivariate Behavioral Research, 2011
A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…
Descriptors: Simulation, Research Methodology, Factor Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Davison, Mark L.; Kim, Se-Kang; Close, Catherine – Multivariate Behavioral Research, 2009
A profile is a vector of scores for one examinee. The mean score in the vector can be interpreted as a measure of overall profile height, the variance can be interpreted as a measure of within person variation, and the ipsatized vector of score deviations about the mean can be said to describe the pattern in the score profile. A within person…
Descriptors: Vocational Interests, Interest Inventories, Profiles, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Se-Kang; Davison, Mark L.; Frisby, Craig L. – Multivariate Behavioral Research, 2007
This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major…
Descriptors: Profiles, Factor Analysis, Multidimensional Scaling, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Nesselroade, John R. – Multivariate Behavioral Research, 2007
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Descriptors: Bayesian Statistics, Computation, Simulation, Behavioral Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta; Neale, Michael C. – Multivariate Behavioral Research, 2006
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or…
Descriptors: Sample Size, Maximum Likelihood Statistics, Models, Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P. – Multivariate Behavioral Research, 2006
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…
Descriptors: Scoring, Probability, Goodness of Fit, Life Satisfaction
Peer reviewed Peer reviewed
McDonald, Roderick P. – Multivariate Behavioral Research, 1996
Six methods for fitting path models with weighted composites of variables replacing latent variables (of which five are easily implemented with conventional computer software) are introduced and related to "soft" modeling by Partial Least Squares. Criteria for comparing their performance are devised, and some evaluative remarks are…
Descriptors: Comparative Analysis, Computer Software, Criteria, Evaluation Methods
Peer reviewed Peer reviewed
McDonald, Roderick P.; Mok, Magdalena M.-C. – Multivariate Behavioral Research, 1995
It is shown that goodness-of-fit criteria developed for the evaluation of multivariate structural models can be applied to assist in evaluating the dimensionality of a test consisting of binary items, and correlative methods regularly used in factor analysis can be employed to diagnose causes of misfit. (Author)
Descriptors: Correlation, Criteria, Evaluation Methods, Factor Analysis
Peer reviewed Peer reviewed
Kaplan, David – Multivariate Behavioral Research, 1990
A strategy for evaluating/modifying covariance structure models (CSMs) is presented. The approach uses recent developments in estimation under nonstandard conditions and unified asymptotic theory related to hypothesis testing, and it determines the extent of sample size sensitivity and specification error effects by relying on existing statistical…
Descriptors: Error of Measurement, Estimation (Mathematics), Evaluation Methods, Goodness of Fit
Peer reviewed Peer reviewed
Goffin, Richard D. – Multivariate Behavioral Research, 1993
Two recent indices of fit, the Relative Noncentrality Index (RNI) (R. P. McDonald and H. W. Marsh, 1990) and the Comparative Fit Index (P. M. Bentler, 1990), are shown to be algebraically equivalent in most applications, although one condition in which the RNI may be advantageous for model comparison is identified. (SLD)
Descriptors: Comparative Analysis, Equations (Mathematics), Evaluation Methods, Goodness of Fit
Peer reviewed Peer reviewed
Goffin, Richard D.; Jackson, Douglas N. – Multivariate Behavioral Research, 1992
The way in which trait and rater variance combine in multitrait-multirater (MTMR) performance appraisal data is explored. Implications of the confirmatory factor analytic model and the composite direct product (CDP) model for MTMR data are examined. Superior fit of the CDP model for four data sets is discussed. (SLD)
Descriptors: Equations (Mathematics), Evaluation Methods, Goodness of Fit, Interrater Reliability