Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
Multivariate Behavioral… | 12 |
Author
Babyak, Michael A. | 1 |
Barcikowski, Robert S. | 1 |
Brown, R. L. | 1 |
Dinno, Alexis | 1 |
Dodou, D. | 1 |
Edwards, Michael C. | 1 |
Estabrook, Ryne | 1 |
Fan, Xitao | 1 |
Green, Samuel B. | 1 |
Lee, Chun-Ting | 1 |
Lee, Sik-Yum | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 6 |
Reports - Evaluative | 3 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 1 |
Audience
Location
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Estabrook, Ryne; Neale, Michael – Multivariate Behavioral Research, 2013
Factor score estimation is a controversial topic in psychometrics, and the estimation of factor scores from exploratory factor models has historically received a great deal of attention. However, both confirmatory factor models and the existence of missing data have generally been ignored in this debate. This article presents a simulation study…
Descriptors: Factor Analysis, Scores, Computation, Regression (Statistics)
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Dinno, Alexis – Multivariate Behavioral Research, 2009
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
Descriptors: Structural Equation Models, Item Response Theory, Computer Software, Surveys
Steinley, Douglas; McDonald, Roderick P. – Multivariate Behavioral Research, 2007
Similarities between latent class models with K classes and linear factor models with K-1 factors are investigated. Specifically, the mathematical equivalence between the covariance structure of the two models is discussed, and a Monte Carlo simulation is performed using generated data that represents both latent factors and latent classes with…
Descriptors: Monte Carlo Methods, Item Response Theory, Factor Analysis
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A. – Multivariate Behavioral Research, 2009
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Descriptors: Sample Size, Factor Analysis, Enrollment, Evaluation Methods
Fan, Xitao; Sivo, Stephen A. – Multivariate Behavioral Research, 2007
The search for cut-off criteria of fit indices for model fit evaluation (e.g., Hu & Bentler, 1999) assumes that these fit indices are sensitive to model misspecification, but not to different types of models. If fit indices were sensitive to different types of models that are misspecified to the same degree, it would be very difficult to establish…
Descriptors: Structural Equation Models, Criteria, Monte Carlo Methods, Factor Analysis
Lee, Sik-Yum; Song, Xin-Yuan; Lu, Bin – Multivariate Behavioral Research, 2007
This article proposes an intuitive approach for predictive discriminant analysis with mixed continuous, dichotomous, and ordered categorical variables that are defined via an underlying multivariate normal distribution with a threshold specification. The classification rule is based on the comparison of the observed data logarithm probability…
Descriptors: Factor Analysis, Discriminant Analysis, Probability, Monte Carlo Methods

Green, Samuel B.; Thompson, Marilyn S.; Babyak, Michael A. – Multivariate Behavioral Research, 1998
Simulated data for factor analytic models is used in the evaluation of three methods for controlling Type I errors: (1) the standard approach that involves testing each parameter at the 0.05 level; (2) the Bonferroni approach; and (3) a simultaneous test procedure (STP). Advantages offered by the Bonferroni approach are discussed. (SLD)
Descriptors: Factor Analysis, Monte Carlo Methods, Simulation, Structural Equation Models

Barcikowski, Robert S.; Stevens, James P. – Multivariate Behavioral Research, 1975
Results showed that the canonical correlations are very stable upon replication. The results also indicated that there is no solid evidence for concluding that components are superior to the coefficients, at least not in terms of being more reliable. (Author/BJG)
Descriptors: Correlation, Factor Analysis, Matrices, Monte Carlo Methods

Velicer, Wayne F.; And Others – Multivariate Behavioral Research, 1982
Factor analysis, image analysis, and principal component analysis are compared with respect to the factor patterns they would produce under various conditions. The general conclusion that is reached is that the three methods produce results that are equivalent. (Author/JKS)
Descriptors: Comparative Analysis, Data Analysis, Factor Analysis, Goodness of Fit

Brown, R. L. – Multivariate Behavioral Research, 1990
A Monte Carlo study was conducted to assess the robustness of the limited information two-stage least squares (2SLS) estimation procedure on a confirmatory factor analysis model with nonnormal distributions. Full information maximum likelihood methods were used for comparison. One hundred model replications were used to generate data. (TJH)
Descriptors: Comparative Analysis, Estimation (Mathematics), Factor Analysis, Least Squares Statistics

Molenaar, Peter C. M.; Nesselroade, John R. – Multivariate Behavioral Research, 1998
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
Descriptors: Chi Square, Comparative Analysis, Error of Measurement, Estimation (Mathematics)