NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Harrop, John W.; Velicer, Wayne F. – Multivariate Behavioral Research, 1985
Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)
Descriptors: Computer Simulation, Data Analysis, Mathematical Models, Matrices
Peer reviewed Peer reviewed
Velicer, Wayne F.; McDonald, Roderick P. – Multivariate Behavioral Research, 1984
A new approach to time series analysis was developed. It employs a generalized transformation of the observed data to meet the assumptions of the general linear model, thus eliminating the need to identify a specific model. This approach permits alternative computational procedures, based on a generalized least squares algorithm. (Author/BW)
Descriptors: Goodness of Fit, Least Squares Statistics, Mathematical Models, Research Design
Peer reviewed Peer reviewed
Eiting, Mindert H.; Mellenbergh, Gideon J. – Multivariate Behavioral Research, 1980
Using reasonable values for the parameters in both null and alternative hypotheses about covariance matrices, an optimal and feasible combination of number of subjects, significance level, and power of the test were determined for an empirical study of the measurement of musical ability. (Author/BW)
Descriptors: Education Majors, Foreign Countries, Higher Education, Hypothesis Testing
Peer reviewed Peer reviewed
Bandalos, Deborah L. – Multivariate Behavioral Research, 1993
A Monte Carlo study investigated the use of four cross-validation indices with confirmatory factor analysis models. Influences of sample size, loading size, and degree of model misspecification were studied. Larger sample sizes and better specified models result in better cross-validation results. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Influences, Mathematical Models
Peer reviewed Peer reviewed
Reddy, Srinivas K.; LaBarbera, Priscilla A. – Multivariate Behavioral Research, 1985
The application and use of hierarchical models is illustrated, using the example of the structure of attitudes toward a new product and a print advertisement. Subjects were college students who responded to seven-point bipolar scales. Hierarchical models were better than nonhierarchical models in conceptualizing attitude but not intention. (GDC)
Descriptors: Advertising, Affective Measures, Attitude Measures, Attitudes
Peer reviewed Peer reviewed
Williams, John Delane – Multivariate Behavioral Research, 1991
A proposed solution for the age x cohort x period issue in lifespan research uses all data, even with missing cells; can be used for repeated measures designs or designs in which new subjects are measured at each period; and allows assessment of each main effect and two-way interaction. (SLD)
Descriptors: Age, Analysis of Variance, Cohort Analysis, Data Interpretation
Peer reviewed Peer reviewed
Green, Samuel B. – Multivariate Behavioral Research, 1991
An evaluation of the rules-of-thumb used to determine the minimum number of subjects required to conduct multiple regression analyses suggests that researchers who use a rule of thumb rather than power analyses trade simplicity of use for accuracy and specificity of response. Insufficient power is likely to result. (SLD)
Descriptors: Correlation, Effect Size, Equations (Mathematics), Estimation (Mathematics)