NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Hofmann, Richard J. – Multivariate Behavioral Research, 1975
A generalized matrix procedure is developed for computing the proportionate contribution of a factor, either orthogonal or oblique, to the total common variance of a factor solution. (Author)
Descriptors: Algorithms, Factor Analysis, Matrices, Oblique Rotation
Peer reviewed Peer reviewed
Trendafilov, Nickolay T. – Multivariate Behavioral Research, 1996
An iterative process is proposed for obtaining an orthogonal simple structure solution. At each iteration, a target matrix is constructed such that the relative contributions of the target majorize the original ones, factor by factor. The convergence of the procedure is proven, and the algorithm is illustrated. (SLD)
Descriptors: Algorithms, Factor Analysis, Factor Structure, Matrices
Peer reviewed Peer reviewed
Wood, Phillip – Multivariate Behavioral Research, 1992
Two Statistical Analysis System (SAS) macros are presented that perform the modified principal components approach of L. R. Tucker (1966) to modeling generalized learning curves analysis up to a rotation of the components. Three SAS macros are described that rotate the factor patterns to have characteristics Tucker considered desirable. (SLD)
Descriptors: Algorithms, Change, Computer Software, Factor Analysis
Peer reviewed Peer reviewed
McDonald, Roderick P.; Hartmann, Wolfgang M. – Multivariate Behavioral Research, 1992
An algorithm for obtaining initial values for the minimization process in covariance structure analysis is developed that is more generally applicable for computing parameters connected to latent variables than the currently existing ones. The algorithm is formulated in terms of the RAM model but can be extended. (SLD)
Descriptors: Algorithms, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Dickinson, Terry L.; Wolens, Leroy – Multivariate Behavioral Research, 1974
Descriptors: Algorithms, Analysis of Variance, Computer Programs, Matrices