NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu – Multivariate Behavioral Research, 2007
Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…
Descriptors: Multivariate Analysis, Statistical Analysis, Statistical Inference, Matrices
Peer reviewed Peer reviewed
Cramer, Elliot M. – Multivariate Behavioral Research, 1974
Descriptors: Correlation, Matrices, Multiple Regression Analysis, Multivariate Analysis
Peer reviewed Peer reviewed
Cramer, Elliot M. – Multivariate Behavioral Research, 1974
Descriptors: Correlation, Matrices, Multiple Regression Analysis, Multivariate Analysis
Peer reviewed Peer reviewed
Barcikowski, Robert S.; Stevens, James P. – Multivariate Behavioral Research, 1975
Results showed that the canonical correlations are very stable upon replication. The results also indicated that there is no solid evidence for concluding that components are superior to the coefficients, at least not in terms of being more reliable. (Author/BJG)
Descriptors: Correlation, Factor Analysis, Matrices, Monte Carlo Methods
Peer reviewed Peer reviewed
Harrop, John W.; Velicer, Wayne F. – Multivariate Behavioral Research, 1985
Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)
Descriptors: Computer Simulation, Data Analysis, Mathematical Models, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Vallejo, Guillermo; Livacic-Rojas, Pablo – Multivariate Behavioral Research, 2005
This article compares two methods for analyzing small sets of repeated measures data under normal and non-normal heteroscedastic conditions: a mixed model approach with the Kenward-Roger correction and a multivariate extension of the modified Brown-Forsythe (BF) test. These procedures differ in their assumptions about the covariance structure of…
Descriptors: Computation, Multivariate Analysis, Sample Size, Matrices
Peer reviewed Peer reviewed
Spiegel, Douglas K. – Multivariate Behavioral Research, 1986
Tau, Lambda, and Kappa are measures developed for the analysis of discrete multivariate data of the type represented by stimulus response confusion matrices. The accuracy with which they may be estimated from small sample confusion matrices is investigated by Monte Carlo methods. (Author/LMO)
Descriptors: Mathematical Models, Matrices, Monte Carlo Methods, Multivariate Analysis
Peer reviewed Peer reviewed
Stelzl, Ingeborg – Multivariate Behavioral Research, 1986
Since computer programs have been available for estimating and testing linear causal models, these models have been used increasingly in the behavioral sciences. This paper discusses the problem that very different causal structures may fit the same set of data equally well. (Author/LMO)
Descriptors: Computer Software, Correlation, Goodness of Fit, Mathematical Models
Peer reviewed Peer reviewed
Tang, K. Linda; Algina, James – Multivariate Behavioral Research, 1993
Type I error rates of four multivariate tests (Pilai-Bartlett trace, Johansen's test, James' first-order test, and James' second-order test) were compared for heterogeneous covariance matrices in 360 simulated experiments. The superior performance of Johansen's test and James' second-order test is discussed. (SLD)
Descriptors: Analysis of Covariance, Analysis of Variance, Comparative Analysis, Equations (Mathematics)