NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Shirkey, Edwin C.; Dziuban, Charles D. – Multivariate Behavioral Research, 1976
Distributional characteristics of the measure of sampling adequacy (MSA) were investigated in sample correlation matrices generated from multivariate normal populations with covariance matrix equal to the identity. Systematic variation of sample size and number of variables resulted in minimal fluctuation of the overall MSA from .50. (Author/RC)
Descriptors: Factor Analysis, Matrices, Sampling, Statistical Analysis
Peer reviewed Peer reviewed
Joe, George W.; Woodward, J. Arthur – Multivariate Behavioral Research, 1975
Descriptors: Correlation, Matrices, Sampling, Statistical Analysis
Peer reviewed Peer reviewed
Humphreys, Lloyd G.; Montanelli, Richard G. – Multivariate Behavioral Research, 1975
Descriptors: Correlation, Factor Analysis, Matrices, Sampling
Peer reviewed Peer reviewed
Velicer, Wayne F.; Fava, Joseph L. – Multivariate Behavioral Research, 1987
Principal component analysis, image component analysis, and maximum likelihood factor analysis were compared to assess the effects of variable sampling. Results with respect to degree of saturation and average number of variables per factor were clear and dramatic. Differential effects on boundary cases and nonconvergence problems were also found.…
Descriptors: Analysis of Variance, Factor Analysis, Mathematical Models, Matrices
Peer reviewed Peer reviewed
Miller, John K. – Multivariate Behavioral Research, 1975
Descriptors: Correlation, Goodness of Fit, Hypothesis Testing, Matrices
Peer reviewed Peer reviewed
Dudzinski, M. L.; And Others – Multivariate Behavioral Research, 1975
Descriptors: Comparative Analysis, Correlation, Factor Analysis, Homogeneous Grouping
Peer reviewed Peer reviewed
Hakstian, Ralph A.; Skakun, Ernest N. – Multivariate Behavioral Research, 1976
Populations of factorially simple and complex data were generated with first the oblique and orthogonal factor models, and then solutions based on special cases of the general orthomax criterion were compared on the basis of these characteristics. The results are discussed and implications noted. (DEP)
Descriptors: Comparative Analysis, Factor Analysis, Mathematical Models, Matrices