NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Varriale, Roberta; Vermunt, Jeroen K. – Multivariate Behavioral Research, 2012
Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…
Descriptors: Factor Analysis, Models, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Estabrook, Ryne; Neale, Michael – Multivariate Behavioral Research, 2013
Factor score estimation is a controversial topic in psychometrics, and the estimation of factor scores from exploratory factor models has historically received a great deal of attention. However, both confirmatory factor models and the existence of missing data have generally been ignored in this debate. This article presents a simulation study…
Descriptors: Factor Analysis, Scores, Computation, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewed Peer reviewed
Bernaards, Coen A.; Sijtsma, Klaas – Multivariate Behavioral Research, 2000
Using simulation, studied the influence of each of 12 imputation methods and 2 methods using the EM algorithm on the results of maximum likelihood factor analysis as compared with results from the complete data factor analysis (no missing scores). Discusses why EM methods recovered complete data factor loadings better than imputation methods. (SLD)
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Questionnaires, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta; Neale, Michael C. – Multivariate Behavioral Research, 2006
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or…
Descriptors: Sample Size, Maximum Likelihood Statistics, Models, Responses
Peer reviewed Peer reviewed
Fava, Joseph L.; Velicer, Wayne F. – Multivariate Behavioral Research, 1992
Effects of overextracting factors and components within and between maximum likelihood factor analysis and principal components analysis were examined through computer simulation of a range of factor and component patterns. Results demonstrate similarity of component and factor scores during overextraction. Overall, results indicate that…
Descriptors: Computer Simulation, Correlation, Factor Analysis, Mathematical Models
Peer reviewed Peer reviewed
Briggs, Nancy E.; MacCallum, Robert C. – Multivariate Behavioral Research, 2003
Examined the relative performance of two commonly used methods of parameter estimation in factor analysis, maximum likelihood (ML) and ordinary least squares (OLS) through simulation. In situations with a moderate amount of error, ML often failed to recover the weak factor while OLS succeeded. Also presented an example using empirical data. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Factor Analysis, Factor Structure
Peer reviewed Peer reviewed
Velicer, Wayne F.; And Others – Multivariate Behavioral Research, 1982
Factor analysis, image analysis, and principal component analysis are compared with respect to the factor patterns they would produce under various conditions. The general conclusion that is reached is that the three methods produce results that are equivalent. (Author/JKS)
Descriptors: Comparative Analysis, Data Analysis, Factor Analysis, Goodness of Fit
Peer reviewed Peer reviewed
Brown, R. L. – Multivariate Behavioral Research, 1990
A Monte Carlo study was conducted to assess the robustness of the limited information two-stage least squares (2SLS) estimation procedure on a confirmatory factor analysis model with nonnormal distributions. Full information maximum likelihood methods were used for comparison. One hundred model replications were used to generate data. (TJH)
Descriptors: Comparative Analysis, Estimation (Mathematics), Factor Analysis, Least Squares Statistics
Peer reviewed Peer reviewed
Molenaar, Peter C. M.; Nesselroade, John R. – Multivariate Behavioral Research, 1998
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
Descriptors: Chi Square, Comparative Analysis, Error of Measurement, Estimation (Mathematics)
Peer reviewed Peer reviewed
Olsson, Ulf – Multivariate Behavioral Research, 1979
The paper discusses the consequences for maximum likelihood factor analysis which may follow if the observed variables are ordinal with only a few scale steps. Results indicate that classification may lead to a substantial lack of fit of the model--an erroneous indication that more factors are needed. (Author/CTM)
Descriptors: Classification, Factor Analysis, Goodness of Fit, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
O'Grady, Kevin E.; Medoff, Deborah R. – Multivariate Behavioral Research, 1991
A procedure for evaluating a variety of rater reliability models is presented. A multivariate linear model is used to describe and assess a set of ratings. Parameters are represented in terms of a factor analytic model, and maximum likelihood methods test the model parameters. Illustrative examples are presented. (SLD)
Descriptors: Comparative Analysis, Correlation, Equations (Mathematics), Estimation (Mathematics)