Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 11 |
Descriptor
Source
Multivariate Behavioral… | 23 |
Author
Yuan, Ke-Hai | 3 |
Savalei, Victoria | 2 |
Velicer, Wayne F. | 2 |
Vermunt, Jeroen K. | 2 |
Aiken, Leona S. | 1 |
Bandalos, Deborah L. | 1 |
Bentler, Peter M. | 1 |
Brosseau-Liard, Patricia E. | 1 |
Browne, M. W. | 1 |
Cham, Heining | 1 |
Cudeck, R. | 1 |
More ▼ |
Publication Type
Journal Articles | 23 |
Reports - Evaluative | 10 |
Reports - Research | 8 |
Reports - Descriptive | 4 |
Opinion Papers | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Elementary Education | 1 |
Grade 5 | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Audience
Location
Italy | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Varriale, Roberta; Vermunt, Jeroen K. – Multivariate Behavioral Research, 2012
Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…
Descriptors: Factor Analysis, Models, Statistical Analysis, Maximum Likelihood Statistics
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S. – Multivariate Behavioral Research, 2012
A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…
Descriptors: Monte Carlo Methods, Computation, Robustness (Statistics), Structural Equation Models
de Rooij, Mark; Schouteden, Martijn – Multivariate Behavioral Research, 2012
Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…
Descriptors: Statistical Analysis, Longitudinal Studies, Data, Models
Brosseau-Liard, Patricia E.; Savalei, Victoria; Li, Libo – Multivariate Behavioral Research, 2012
The root mean square error of approximation (RMSEA) is a popular fit index in structural equation modeling (SEM). Typically, RMSEA is computed using the normal theory maximum likelihood (ML) fit function. Under nonnormality, the uncorrected sample estimate of the ML RMSEA tends to be inflated. Two robust corrections to the sample ML RMSEA have…
Descriptors: Structural Equation Models, Goodness of Fit, Maximum Likelihood Statistics, Robustness (Statistics)
Lombardi, Luigi; Pastore, Massimiliano – Multivariate Behavioral Research, 2012
In many psychological questionnaires the need to analyze empirical data raises the fundamental problem of possible fake or fraudulent observations in the data. This aspect is particularly relevant for researchers working on sensitive topics such as, for example, risky sexual behaviors and drug addictions. Our contribution presents a new…
Descriptors: Deception, Measures (Individuals), Sampling, Structural Equation Models
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Savalei, Victoria; Yuan, Ke-Hai – Multivariate Behavioral Research, 2009
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…
Descriptors: Statistical Inference, Goodness of Fit, Structural Equation Models, Transformations (Mathematics)
Culpepper, Steven Andrew – Multivariate Behavioral Research, 2009
This study linked nonlinear profile analysis (NPA) of dichotomous responses with an existing family of item response theory models and generalized latent variable models (GLVM). The NPA method offers several benefits over previous internal profile analysis methods: (a) NPA is estimated with maximum likelihood in a GLVM framework rather than…
Descriptors: Profiles, Item Response Theory, Models, Maximum Likelihood Statistics
Klein, Andreas G.; Muthen, Bengt O. – Multivariate Behavioral Research, 2007
In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…
Descriptors: Structural Equation Models, Testing, Physical Fitness, Interaction

Everitt, B. S. – Multivariate Behavioral Research, 1984
Latent class analysis is formulated as a problem of estimating parameters in a finite mixture distribution. The EM algorithm is used to find the maximum likelihood estimates, and the case of categorical variables with more than two categories is considered. (Author)
Descriptors: Algorithms, Estimation (Mathematics), Mathematical Models, Maximum Likelihood Statistics
Lubke, Gitta; Neale, Michael C. – Multivariate Behavioral Research, 2006
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or…
Descriptors: Sample Size, Maximum Likelihood Statistics, Models, Responses

Fava, Joseph L.; Velicer, Wayne F. – Multivariate Behavioral Research, 1992
Effects of overextracting factors and components within and between maximum likelihood factor analysis and principal components analysis were examined through computer simulation of a range of factor and component patterns. Results demonstrate similarity of component and factor scores during overextraction. Overall, results indicate that…
Descriptors: Computer Simulation, Correlation, Factor Analysis, Mathematical Models

Woodbury, Max A.; Manton, Kenneth G. – Multivariate Behavioral Research, 1991
An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics), Mathematical Models

Bentler, Peter M.; Yuan, Ke-Hai – Multivariate Behavioral Research, 1999
Studied the small sample behavior of several test statistics based on the maximum-likelihood estimator but designed to perform better with nonnormal data. Monte Carlo results indicate the satisfactory performance of the "F" statistic recently proposed by K. Yuan and P. Bentler (1997). (SLD)
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods, Sample Size
Previous Page | Next Page ยป
Pages: 1 | 2