NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ryoo, Ji Hoon – Multivariate Behavioral Research, 2011
Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…
Descriptors: Models, Selection, Data Analysis, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta – Multivariate Behavioral Research, 2011
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
Descriptors: Bayesian Statistics, Statistical Inference, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian – Multivariate Behavioral Research, 2011
Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…
Descriptors: Simulation, Factor Analysis, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Lai-Fa – Multivariate Behavioral Research, 2011
The process-component approach has become quite popular for examining many psychological concepts. A typical example is the model with internal restrictions on item difficulty (MIRID) described by Butter (1994) and Butter, De Boeck, and Verhelst (1998). This study proposes a hierarchical generalized random-situation random-weight MIRID. The…
Descriptors: Markov Processes, Computer Software, Psychology, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kammeyer-Mueller, John; Steel, Piers D. G.; Rubenstein, Alex – Multivariate Behavioral Research, 2010
Common source bias has been the focus of much attention. To minimize the problem, researchers have sometimes been advised to take measurements of predictors from one observer and measurements of outcomes from another observer or to use separate occasions of measurement. We propose that these efforts to eliminate biases due to common source…
Descriptors: Statistical Bias, Predictor Variables, Measurement, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Vallejo, G.; Fernandez, M. P.; Livacic-Rojas, P. E.; Tuero-Herrero, E. – Multivariate Behavioral Research, 2011
Missing data are a pervasive problem in many psychological applications in the real world. In this article we study the impact of dropout on the operational characteristics of several approaches that can be easily implemented with commercially available software. These approaches include the covariance pattern model based on an unstructured…
Descriptors: Personality Problems, Psychosis, Prevention, Patients
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S. – Multivariate Behavioral Research, 2008
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
Descriptors: Calculus, Models, Longitudinal Studies, Psychological Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Mavridis, Dimitris; Moustaki, Irini – Multivariate Behavioral Research, 2008
In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani,…
Descriptors: Simulation, Mathematics, Factor Analysis, Discriminant Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Lijuan; Zhang, Zhiyong; McArdle, John J.; Salthouse, Timothy A. – Multivariate Behavioral Research, 2008
Score limitation at the top of a scale is commonly termed "ceiling effect." Ceiling effects can lead to serious artifactual parameter estimates in most data analysis. This study examines the consequences of ceiling effects in longitudinal data analysis and investigates several methods of dealing with ceiling effects through Monte Carlo simulations…
Descriptors: Longitudinal Studies, Data Analysis, Evaluation Methods, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kwok, Oi-man; West, Stephen G.; Green, Samuel B. – Multivariate Behavioral Research, 2007
This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…
Descriptors: Monte Carlo Methods, Data Analysis, Computation, Longitudinal Studies
Peer reviewed Peer reviewed
Hedeker, Donald; Mermelstein, Robin J. – Multivariate Behavioral Research, 1998
A model for multilevel ordinal response data is described that allows for nonproportional odds for a subset of explanatory variables. The model, the multilevel thresholds of change model, focuses on modeling the K-1 thresholds that delineate membership in the "K" ordered stages. The model is illustrated with data from a cancer prevention study.…
Descriptors: Cancer, Change, Data Analysis, Models
Peer reviewed Peer reviewed
Plewis, Ian – Multivariate Behavioral Research, 2001
Describes, with examples, three modeling approaches when both "y" and "x" change over time: a conditional approach, an unconditional approach, and an approach based on structural equation modeling. All three can be implemented in a multilevel framework. Also describes how more interesting hypotheses about social processes can…
Descriptors: Change, Data Analysis, Development, Models
Peer reviewed Peer reviewed
Reise, Steven P.; Duan, Naihua – Multivariate Behavioral Research, 2001
Introduces this special issue on multilevel models. The first two articles examine the application of multilevel modeling (MLM) in the evaluation of large-scale multi-site interventions. The next two articles focus on developmental and longitudinal data analysis, and the last two describe innovative applications of MLM. (SLD)
Descriptors: Data Analysis, Intervention, Longitudinal Studies, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Moerbeek, Mirjam – Multivariate Behavioral Research, 2004
Multilevel analysis is an appropriate tool for the analysis of hierarchically structured data. There may, however, be reasons to ignore one of the levels of nesting in the data analysis. In this article a three level model with one predictor variable is used as a reference model and the top or intermediate level is ignored in the data analysis.…
Descriptors: Data Analysis, Predictor Variables, Computation, Statistical Analysis
Previous Page | Next Page ยป
Pages: 1  |  2