NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)13
Source
Multivariate Behavioral…14
Audience
Location
Germany1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xin; Zhang, Zhiyong – Multivariate Behavioral Research, 2012
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
Descriptors: Models, Robustness (Statistics), Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
We examine emotion self-regulation and coregulation in romantic couples using daily self-reports of positive and negative affect. We fit these data using a damped linear oscillator model specified as a latent differential equation to investigate affect dynamics at the individual level and coupled influences for the 2 partners in each couple.…
Descriptors: Affective Behavior, Calculus, Models, Females
Peer reviewed Peer reviewed
Direct linkDirect link
Halpin, Peter F.; Maraun, Michael D. – Multivariate Behavioral Research, 2010
A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…
Descriptors: Models, Selection, Vocational Evaluation, Developmental Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria – Multivariate Behavioral Research, 2010
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years…
Descriptors: Computation, Intervals, Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Maydeu-Olivares, Alberto; Brown, Anna – Multivariate Behavioral Research, 2010
The comparative format used in ranking and paired comparisons tasks can significantly reduce the impact of uniform response biases typically associated with rating scales. Thurstone's (1927, 1931) model provides a powerful framework for modeling comparative data such as paired comparisons and rankings. Although Thurstonian models are generally…
Descriptors: Item Response Theory, Rating Scales, Models, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S. – Multivariate Behavioral Research, 2008
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
Descriptors: Calculus, Models, Longitudinal Studies, Psychological Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Marsh, Herbert W.; Ludtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt; Nagengast, Benjamin – Multivariate Behavioral Research, 2009
This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2)…
Descriptors: Educational Environment, Context Effect, Models, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Multivariate Behavioral Research, 2009
This study linked nonlinear profile analysis (NPA) of dichotomous responses with an existing family of item response theory models and generalized latent variable models (GLVM). The NPA method offers several benefits over previous internal profile analysis methods: (a) NPA is estimated with maximum likelihood in a GLVM framework rather than…
Descriptors: Profiles, Item Response Theory, Models, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kwok, Oi-man; West, Stephen G.; Green, Samuel B. – Multivariate Behavioral Research, 2007
This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…
Descriptors: Monte Carlo Methods, Data Analysis, Computation, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Meyers, Jason L.; Beretvas, S. Natasha – Multivariate Behavioral Research, 2006
Cross-classified random effects modeling (CCREM) is used to model multilevel data from nonhierarchical contexts. These models are widely discussed but infrequently used in social science research. Because little research exists assessing when it is necessary to use CCREM, 2 studies were conducted. A real data set with a cross-classified structure…
Descriptors: Social Science Research, Computation, Models, Data Analysis
Peer reviewed Peer reviewed
MacCallum, Robert C.; Widaman, Keith F.; Preacher, Kristopher J.; Hong, Sehee – Multivariate Behavioral Research, 2001
Examined the effects of sample size and other design features on correspondence between factors obtained from analysis of sample data and those present in the population from which the samples were drawn, examining these phenomena in the situation in which the common factor model does not hold exactly in the population. Tested a theoretical…
Descriptors: Error of Measurement, Factor Analysis, Goodness of Fit, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods