NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Lai-Fa – Multivariate Behavioral Research, 2010
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
Descriptors: Longitudinal Studies, Data, Models, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Dinno, Alexis – Multivariate Behavioral Research, 2009
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
Descriptors: Structural Equation Models, Item Response Theory, Computer Software, Surveys
Peer reviewed Peer reviewed
Direct linkDirect link
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A. – Multivariate Behavioral Research, 2009
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Descriptors: Sample Size, Factor Analysis, Enrollment, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Xitao; Sivo, Stephen A. – Multivariate Behavioral Research, 2007
The search for cut-off criteria of fit indices for model fit evaluation (e.g., Hu & Bentler, 1999) assumes that these fit indices are sensitive to model misspecification, but not to different types of models. If fit indices were sensitive to different types of models that are misspecified to the same degree, it would be very difficult to establish…
Descriptors: Structural Equation Models, Criteria, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Reinartz, Werner J.; Echambadi, Raj; Cin, Wynne W. – Multivariate Behavioral Research, 2002
Tested empirically the applicability of a method developed by S. Mattson for generating data on latent variables with controlled skewness and kurtosis of the observed variables. Monte Carlo simulation results suggest that Mattson's method appears to be a good approach to generate data with defined levels of skewness and kurtosis. (SLD)
Descriptors: Computer Simulation, Monte Carlo Methods, Structural Equation Models
Peer reviewed Peer reviewed
Tomas, Jose M.; Hontangas, Pedro M.; Oliver, Amparo – Multivariate Behavioral Research, 2000
Assessed two models for confirmatory factor analysis of multitrait-multimethod data through Monte Carlo simulation. The correlated traits-correlated methods (CTCM) and the correlated traits-correlated uniqueness (CTCU) models were compared. Results suggest that CTCU is a good alternative to CTCM in the typical multitrait-multimethod matrix, but…
Descriptors: Matrices, Monte Carlo Methods, Multitrait Multimethod Techniques, Simulation
Peer reviewed Peer reviewed
Dumenci, Levent; Windle, Michael – Multivariate Behavioral Research, 2001
Used Monte Carlo methods to evaluate the adequacy of cluster analysis to recover group membership based on simulated latent growth curve (LCG) models. Cluster analysis failed to recover growth subtypes adequately when the difference between growth curves was shape only. Discusses circumstances under which it was more successful. (SLD)
Descriptors: Cluster Analysis, Group Membership, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Green, Samuel B.; Thompson, Marilyn S.; Babyak, Michael A. – Multivariate Behavioral Research, 1998
Simulated data for factor analytic models is used in the evaluation of three methods for controlling Type I errors: (1) the standard approach that involves testing each parameter at the 0.05 level; (2) the Bonferroni approach; and (3) a simultaneous test procedure (STP). Advantages offered by the Bonferroni approach are discussed. (SLD)
Descriptors: Factor Analysis, Monte Carlo Methods, Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Kim, Chulwan; Rangaswamy, Arvind; DeSarbo, Wayne S. – Multivariate Behavioral Research, 1999
Presents an approach to multidimensional unfolding that reduces the occurrence of degenerate solutions and conducts a Monte Carlo study to demonstrate the superiority of the new method to the ALSCAL and KYST nonmetric procedures for student preference data. (SLD)
Descriptors: Monte Carlo Methods, Multidimensional Scaling, Problem Solving, Simulation
Peer reviewed Peer reviewed
Pavur, Robert; Nath, Ravinder – Multivariate Behavioral Research, 1989
A Monte Carlo simulation study compared the power and Type I errors of the Wilks lambda statistic and the statistic of M. L. Puri and P. K. Sen (1971) on transformed data in a one-way multivariate analysis of variance. Preferred test procedures, based on robustness and power, are discussed. (SLD)
Descriptors: Comparative Analysis, Mathematical Models, Monte Carlo Methods, Multivariate Analysis
Peer reviewed Peer reviewed
Rasmussen, Jeffrey Lee – Multivariate Behavioral Research, 1988
A Monte Carlo simulation was used to compare the Mahalanobis "D" Squared and the Comrey "Dk" methods of detecting outliers in data sets. Under the conditions investigated, the "D" Squared technique was preferable as an outlier removal statistic. (SLD)
Descriptors: Comparative Analysis, Computer Simulation, Data Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Cohen, Jacob; Nee, John C. M. – Multivariate Behavioral Research, 1990
The analysis of contingency tables via set correlation allows the assessment of subhypotheses involving contrast functions of the categories of the nominal scales. The robustness of such methods with regard to Type I error and statistical power was studied via a Monte Carlo experiment. (TJH)
Descriptors: Computer Simulation, Monte Carlo Methods, Multivariate Analysis, Power (Statistics)
Previous Page | Next Page ยป
Pages: 1  |  2