NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Olivera-Aguilar, Margarita; Millsap, Roger E. – Multivariate Behavioral Research, 2013
A common finding in studies of differential prediction across groups is that although regression slopes are the same or similar across groups, group differences exist in regression intercepts. Building on earlier work by Birnbaum (1979), Millsap (1998) presented an invariant factor model that would explain such intercept differences as arising due…
Descriptors: Statistical Analysis, Measurement, Prediction, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Schluchter, Mark D. – Multivariate Behavioral Research, 2008
In behavioral research, interest is often in examining the degree to which the effect of an independent variable X on an outcome Y is mediated by an intermediary or mediator variable M. This article illustrates how generalized estimating equations (GEE) modeling can be used to estimate the indirect or mediated effect, defined as the amount by…
Descriptors: Intervals, Predictor Variables, Equations (Mathematics), Computation
Peer reviewed Peer reviewed
Tisak, John – Multivariate Behavioral Research, 1994
The regression coefficients and the associated standard errors in hierarchical regression, when a theoretical basis for the analysis exists, are determined for four regression models. Each reflects different controlling or partialling of the variates. An illustration is presented using data from the Berkeley Growth Study. (SLD)
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Predictor Variables
Peer reviewed Peer reviewed
MacKinnon, David P.; And Others – Multivariate Behavioral Research, 1995
Analytical solutions for point and variance estimators of the mediated effect, the ratio of mediated to direct effect, and the proportion of the total effect mediated were determined through simulation for different samples. The sample sizes needed for accuracy and stability are discussed with implications for mediated effects estimates. (SLD)
Descriptors: Equations (Mathematics), Error of Measurement, Estimation (Mathematics), Multivariate Analysis
Peer reviewed Peer reviewed
Anderson, Lance E.; And Others – Multivariate Behavioral Research, 1996
Simulations were used to compare the moderator variable detection capabilities of moderated multiple regression (MMR) and errors-in-variables regression (EIVR). Findings show that EIVR estimates are superior for large samples, but that MMR is better when reliabilities or sample sizes are low. (SLD)
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Coffman, Donna L.; MacCallum, Robert C. – Multivariate Behavioral Research, 2005
The biasing effects of measurement error in path analysis models can be overcome by the use of latent variable models. In cases where path analysis is used in practice, it is often possible to use parcels as indicators of a latent variable. The purpose of the current study was to compare latent variable models in which parcels were used as…
Descriptors: Measurement, Error of Measurement, Path Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Vermunt, Jeroen K. – Multivariate Behavioral Research, 2005
A well-established approach to modeling clustered data introduces random effects in the model of interest. Mixed-effects logistic regression models can be used to predict discrete outcome variables when observations are correlated. An extension of the mixed-effects logistic regression model is presented in which the dependent variable is a latent…
Descriptors: Predictor Variables, Correlation, Maximum Likelihood Statistics, Error of Measurement