NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Brosseau-Liard, Patricia E.; Savalei, Victoria; Li, Libo – Multivariate Behavioral Research, 2012
The root mean square error of approximation (RMSEA) is a popular fit index in structural equation modeling (SEM). Typically, RMSEA is computed using the normal theory maximum likelihood (ML) fit function. Under nonnormality, the uncorrected sample estimate of the ML RMSEA tends to be inflated. Two robust corrections to the sample ML RMSEA have…
Descriptors: Structural Equation Models, Goodness of Fit, Maximum Likelihood Statistics, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S. – Multivariate Behavioral Research, 2012
A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…
Descriptors: Monte Carlo Methods, Computation, Robustness (Statistics), Structural Equation Models