NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Johnny; Bentler, Peter M. – Multivariate Behavioral Research, 2012
Goodness-of-fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square, but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's (1984) asymptotically distribution-free method and Satorra Bentler's…
Descriptors: Factor Analysis, Statistical Analysis, Scaling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Olivera-Aguilar, Margarita; Millsap, Roger E. – Multivariate Behavioral Research, 2013
A common finding in studies of differential prediction across groups is that although regression slopes are the same or similar across groups, group differences exist in regression intercepts. Building on earlier work by Birnbaum (1979), Millsap (1998) presented an invariant factor model that would explain such intercept differences as arising due…
Descriptors: Statistical Analysis, Measurement, Prediction, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Fritz, Matthew S.; Taylor, Aaron B.; MacKinnon, David P. – Multivariate Behavioral Research, 2012
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special…
Descriptors: Statistical Analysis, Error of Measurement, Statistical Bias, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Halpin, Peter F.; Maraun, Michael D. – Multivariate Behavioral Research, 2010
A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…
Descriptors: Models, Selection, Vocational Evaluation, Developmental Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez-Roma, Vicente; Hernandez, Ana; Gomez-Benito, Juana – Multivariate Behavioral Research, 2006
In this simulation study, we investigate the power and Type I error rate of a procedure based on the mean and covariance structure analysis (MACS) model in detecting differential item functioning (DIF) of graded response items with five response categories. The following factors were manipulated: type of DIF (uniform and non-uniform), DIF…
Descriptors: Multivariate Analysis, Item Response Theory, Test Bias, Sample Size
Peer reviewed Peer reviewed
MacCallum, Robert C.; Widaman, Keith F.; Preacher, Kristopher J.; Hong, Sehee – Multivariate Behavioral Research, 2001
Examined the effects of sample size and other design features on correspondence between factors obtained from analysis of sample data and those present in the population from which the samples were drawn, examining these phenomena in the situation in which the common factor model does not hold exactly in the population. Tested a theoretical…
Descriptors: Error of Measurement, Factor Analysis, Goodness of Fit, Models
Peer reviewed Peer reviewed
MacKinnon, David P.; And Others – Multivariate Behavioral Research, 1995
Analytical solutions for point and variance estimators of the mediated effect, the ratio of mediated to direct effect, and the proportion of the total effect mediated were determined through simulation for different samples. The sample sizes needed for accuracy and stability are discussed with implications for mediated effects estimates. (SLD)
Descriptors: Equations (Mathematics), Error of Measurement, Estimation (Mathematics), Multivariate Analysis
Peer reviewed Peer reviewed
Kaplan, David – Multivariate Behavioral Research, 1990
A strategy for evaluating/modifying covariance structure models (CSMs) is presented. The approach uses recent developments in estimation under nonstandard conditions and unified asymptotic theory related to hypothesis testing, and it determines the extent of sample size sensitivity and specification error effects by relying on existing statistical…
Descriptors: Error of Measurement, Estimation (Mathematics), Evaluation Methods, Goodness of Fit
Peer reviewed Peer reviewed
Anderson, Lance E.; And Others – Multivariate Behavioral Research, 1996
Simulations were used to compare the moderator variable detection capabilities of moderated multiple regression (MMR) and errors-in-variables regression (EIVR). Findings show that EIVR estimates are superior for large samples, but that MMR is better when reliabilities or sample sizes are low. (SLD)
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Interaction
Peer reviewed Peer reviewed
Thompson, Paul A. – Multivariate Behavioral Research, 1991
Application of the bootstrap method to complex psychological analysis is illustrated using a simulation experiment with two populations with small and large samples. The method provides variance estimates, allows testing of nested competing models, and gives a preliminary idea about parameter variability. (SLD)
Descriptors: Computer Simulation, Equations (Mathematics), Error of Measurement, Estimation (Mathematics)
Peer reviewed Peer reviewed
Tang, K. Linda; Algina, James – Multivariate Behavioral Research, 1993
Type I error rates of four multivariate tests (Pilai-Bartlett trace, Johansen's test, James' first-order test, and James' second-order test) were compared for heterogeneous covariance matrices in 360 simulated experiments. The superior performance of Johansen's test and James' second-order test is discussed. (SLD)
Descriptors: Analysis of Covariance, Analysis of Variance, Comparative Analysis, Equations (Mathematics)