Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 17 |
Descriptor
Source
Multivariate Behavioral… | 26 |
Author
Publication Type
Journal Articles | 25 |
Reports - Research | 16 |
Reports - Evaluative | 5 |
Reports - Descriptive | 3 |
Reports - General | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Belgium | 1 |
France | 1 |
Netherlands | 1 |
Portugal | 1 |
Spain | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Ferrari, Pier Alda; Barbiero, Alessandro – Multivariate Behavioral Research, 2012
The increasing use of ordinal variables in different fields has led to the introduction of new statistical methods for their analysis. The performance of these methods needs to be investigated under a number of experimental conditions. Procedures to simulate from ordinal variables are then required. In this article, we deal with simulation from…
Descriptors: Data, Statistical Analysis, Sampling, Simulation
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Lin, Johnny; Bentler, Peter M. – Multivariate Behavioral Research, 2012
Goodness-of-fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square, but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's (1984) asymptotically distribution-free method and Satorra Bentler's…
Descriptors: Factor Analysis, Statistical Analysis, Scaling, Sample Size
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian – Multivariate Behavioral Research, 2011
Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…
Descriptors: Simulation, Factor Analysis, Item Response Theory, Models
Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L. – Multivariate Behavioral Research, 2011
A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…
Descriptors: Simulation, Research Methodology, Factor Analysis, Item Response Theory
Zhang, Guangjian; Browne, Michael W. – Multivariate Behavioral Research, 2010
Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…
Descriptors: Statistical Inference, Error of Measurement, Factor Analysis, Simulation
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Molenaar, Peter C. M.; Nesselroade, John R. – Multivariate Behavioral Research, 2009
It seems that just when we are about to lay P-technique factor analysis finally to rest as obsolete because of newer, more sophisticated multivariate time-series models using latent variables--dynamic factor models--it rears its head to inform us that an obituary may be premature. We present the results of some simulations demonstrating that even…
Descriptors: Factor Analysis, Multivariate Analysis, Simulation, Affective Behavior
Cai, Li; Lee, Taehun – Multivariate Behavioral Research, 2009
We apply the Supplemented EM algorithm (Meng & Rubin, 1991) to address a chronic problem with the "two-stage" fitting of covariance structure models in the presence of ignorable missing data: the lack of an asymptotically chi-square distributed goodness-of-fit statistic. We show that the Supplemented EM algorithm provides a…
Descriptors: Aggression, Simulation, Factor Analysis, Goodness of Fit
Dinno, Alexis – Multivariate Behavioral Research, 2009
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
Descriptors: Structural Equation Models, Item Response Theory, Computer Software, Surveys
Mavridis, Dimitris; Moustaki, Irini – Multivariate Behavioral Research, 2008
In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani,…
Descriptors: Simulation, Mathematics, Factor Analysis, Discriminant Analysis
Jamshidian, Mortaza; Mata, Matthew – Multivariate Behavioral Research, 2008
Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing…
Descriptors: Structural Equation Models, Simulation, Factor Analysis, Research Methodology
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A. – Multivariate Behavioral Research, 2009
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Descriptors: Sample Size, Factor Analysis, Enrollment, Evaluation Methods
Previous Page | Next Page ยป
Pages: 1 | 2