NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kelava, Augustin; Nagengast, Benjamin – Multivariate Behavioral Research, 2012
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Descriptors: Bayesian Statistics, Computation, Structural Equation Models, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Jaehwa; Harring, Jeffrey R.; Hancock, Gregory R. – Multivariate Behavioral Research, 2009
Throughout much of the social and behavioral sciences, latent growth modeling (latent curve analysis) has become an important tool for understanding individuals' longitudinal change. Although nonlinear variations of latent growth models appear in the methodological and applied literature, a notable exclusion is the treatment of growth following…
Descriptors: Causal Models, Structural Equation Models, Longitudinal Studies, Change
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Huang, I-Chan; Marcoulides, George A. – Multivariate Behavioral Research, 2008
This article presents the use of an ant colony optimization (ACO) algorithm for the development of short forms of scales. An example 22-item short form is developed for the Diabetes-39 scale, a quality-of-life scale for diabetes patients, using a sample of 265 diabetes patients. A simulation study comparing the performance of the ACO algorithm and…
Descriptors: Mathematics, Measures (Individuals), Diabetes, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Dinno, Alexis – Multivariate Behavioral Research, 2009
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
Descriptors: Structural Equation Models, Item Response Theory, Computer Software, Surveys
Peer reviewed Peer reviewed
Direct linkDirect link
Jamshidian, Mortaza; Mata, Matthew – Multivariate Behavioral Research, 2008
Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing…
Descriptors: Structural Equation Models, Simulation, Factor Analysis, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Woods, Carol M. – Multivariate Behavioral Research, 2009
Differential item functioning (DIF) occurs when an item on a test or questionnaire has different measurement properties for 1 group of people versus another, irrespective of mean differences on the construct. This study focuses on the use of multiple-indicator multiple-cause (MIMIC) structural equation models for DIF testing, parameterized as item…
Descriptors: Test Bias, Structural Equation Models, Item Response Theory, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Xitao; Sivo, Stephen A. – Multivariate Behavioral Research, 2007
The search for cut-off criteria of fit indices for model fit evaluation (e.g., Hu & Bentler, 1999) assumes that these fit indices are sensitive to model misspecification, but not to different types of models. If fit indices were sensitive to different types of models that are misspecified to the same degree, it would be very difficult to establish…
Descriptors: Structural Equation Models, Criteria, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Mattson, Stefan – Multivariate Behavioral Research, 1997
A procedure is proposed to generate non-normal data for simulation of structural equation models. The procedure uses a simple transformation of univariate random variables for the generation of data on latent and error variables under some restrictions for the elements of the covariance matrices for these variables. (SLD)
Descriptors: Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Enders, Craig K. – Multivariate Behavioral Research, 2002
Proposed a method for extending the Bollen-Stine bootstrap model (K. Bollen and R. Stine, 1992) fit to structural equation models with missing data. Developed a Statistical Analysis System macro program to implement this procedure, and assessed its usefulness in a simulation. The new method yielded model rejection rates close to the nominal 5%…
Descriptors: Goodness of Fit, Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Green, Samuel B.; Thompson, Marilyn S.; Babyak, Michael A. – Multivariate Behavioral Research, 1998
Simulated data for factor analytic models is used in the evaluation of three methods for controlling Type I errors: (1) the standard approach that involves testing each parameter at the 0.05 level; (2) the Bonferroni approach; and (3) a simultaneous test procedure (STP). Advantages offered by the Bonferroni approach are discussed. (SLD)
Descriptors: Factor Analysis, Monte Carlo Methods, Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin Yuan; Poon, Wai-Yin – Multivariate Behavioral Research, 2004
Various approaches using the maximum likelihood (ML) option of the LISREL program and products of indicators have been proposed to analyze structural equation models with non-linear latent effects on the basis of Kenny and Judd's formulation. Recently, some methods based on the Bayesian approach and the exact ML approaches have been developed.…
Descriptors: Comparative Analysis, Structural Equation Models, Statistical Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hartig, Johannes; Holzel, Britta; Moosbrugger, Helfried – Multivariate Behavioral Research, 2007
Numerous studies have shown increasing item reliabilities as an effect of the item position in personality scales. Traditionally, these context effects are analyzed based on item-total correlations. This approach neglects that trends in item reliabilities can be caused either by an increase in true score variance or by a decrease in error…
Descriptors: True Scores, Error of Measurement, Structural Equation Models, Simulation
Previous Page | Next Page ยป
Pages: 1  |  2