NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)128
Source
Multivariate Behavioral…372
Audience
Researchers4
What Works Clearinghouse Rating
Showing 1 to 15 of 372 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Molenaar, Peter C. M. – Multivariate Behavioral Research, 2012
Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This article verifies the…
Descriptors: Structural Equation Models, Algebra, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gignac, Gilles E.; Watkins, Marley W. – Multivariate Behavioral Research, 2013
Previous confirmatory factor analytic research that has examined the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) has endorsed either higher order models or oblique factor models that tend to amalgamate both general factor and index factor sources of systematic variance. An alternative model that has not yet…
Descriptors: Intelligence Tests, Test Reliability, Factor Structure, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Reise, Steven P. – Multivariate Behavioral Research, 2012
Bifactor latent structures were introduced over 70 years ago, but only recently has bifactor modeling been rediscovered as an effective approach to modeling "construct-relevant" multidimensionality in a set of ordered categorical item responses. I begin by describing the Schmid-Leiman bifactor procedure (Schmid & Leiman, 1957) and highlight its…
Descriptors: Models, Factor Structure, Factor Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
de Leeuw, Christiaan; Klugkist, Irene – Multivariate Behavioral Research, 2012
In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…
Descriptors: Data, Multiple Regression Analysis, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Preacher, Kristopher J. – Multivariate Behavioral Research, 2011
Strategies for modeling mediation effects in multilevel data have proliferated over the past decade, keeping pace with the demands of applied research. Approaches for testing mediation hypotheses with 2-level clustered data were first proposed using multilevel modeling (MLM) and subsequently using multilevel structural equation modeling (MSEM) to…
Descriptors: Structural Equation Models, Data, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sterba, Sonya K.; Baldasaro, Ruth E.; Bauer, Daniel J. – Multivariate Behavioral Research, 2012
Psychologists have long been interested in characterizing individual differences in change over time. It is often plausible to assume that the distribution of these individual differences is continuous in nature, yet theory is seldom so specific as to designate its parametric form (e.g., normal). Semiparametric groups-based trajectory models…
Descriptors: Individual Differences, Change, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ferrer, Emilio; Steele, Joel S.; Hsieh, Fushing – Multivariate Behavioral Research, 2012
There are many compelling accounts of the ways in which the emotions of 1 member of a romantic relationship should influence and be influenced by the partner. However, there are relatively few methodological tools available for representing the alleged complexity of dyad level emotional experiences. In this article, we present an algorithm for…
Descriptors: Interpersonal Relationship, Psychological Patterns, Emotional Experience, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl – Multivariate Behavioral Research, 2011
The standardization of loadings gives a metric to the corresponding latent variable and thus scales the variance of this latent variable. By assigning an appropriately estimated weight to all the loadings on the same latent variable it can be achieved that the average squared loading is 1 as the result of standardization. As a consequence, there…
Descriptors: Structural Equation Models, Short Term Memory, Evaluation Methods, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Preacher, Kristopher J.; Zhang, Guangjian; Kim, Cheongtag; Mels, Gerhard – Multivariate Behavioral Research, 2013
A central problem in the application of exploratory factor analysis is deciding how many factors to retain ("m"). Although this is inherently a model selection problem, a model selection perspective is rarely adopted for this task. We suggest that Cudeck and Henly's (1991) framework can be applied to guide the selection process.…
Descriptors: Factor Analysis, Models, Selection, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
We examine emotion self-regulation and coregulation in romantic couples using daily self-reports of positive and negative affect. We fit these data using a damped linear oscillator model specified as a latent differential equation to investigate affect dynamics at the individual level and coupled influences for the 2 partners in each couple.…
Descriptors: Affective Behavior, Calculus, Models, Females
Peer reviewed Peer reviewed
Direct linkDirect link
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  25