NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ramos, L. M.; Reis, C. R. N.; Calheiro, L. B.; Goncalves, A. M. B. – Physics Education, 2021
Using a joystick module, we followed the movement of a chaotic magnetic pendulum. The pendulum bar was attached to a joystick that served as a pivot point and biaxial angular motion sensor. Using an Arduino board, we could follow the position as a function of time along both the "x" and "y"-axis and draw a graph showing the…
Descriptors: Physics, Science Instruction, Computer Software, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, I.; Khun Khun, K.; Kaur, B. – Physics Education, 2019
This paper presents the usage of an Excel spreadsheet for studying charged particle dynamics in the presence of uniform electric and magnetic fields. The equation of motion of the charged particle is developed under different conditions and the data is obtained in an Excel spreadsheet under variation of parameters such as the velocity of charged…
Descriptors: Physics, Science Instruction, Computer Software, Spreadsheets
Peer reviewed Peer reviewed
Direct linkDirect link
Kraftmakher, Yaakov – Physics Education, 2013
Two computer-assisted experiments are described: (i) determination of the speed of ultrasound waves in water and (ii) measurement of the thermal expansion of an aluminum-based alloy. A new data-acquisition system developed by PASCO scientific is used. In both experiments, the "Keep" mode of recording data is employed: the data are…
Descriptors: Science Experiments, Computer Assisted Instruction, Motion, Acoustics
Peer reviewed Peer reviewed
Direct linkDirect link
Wee, Loo Kang; Tan, Kim Kia; Leong, Tze Kwang; Tan, Ching – Physics Education, 2015
This paper reports the use of Tracker as a computer-based learning tool to support effective learning and teaching of "toss up" and free fall motion for beginning secondary three (15?year-old) students. The case study involved (N = 123) students from express pure physics classes at a mainstream school in Singapore. We used eight…
Descriptors: Computer Assisted Instruction, Motion, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny – Physics Education, 2012
A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…
Descriptors: Electronic Equipment, Laboratory Equipment, Science Instruction, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Bryan, J. A. – Physics Education, 2010
Inexpensive video analysis technology now enables students to make precise measurements of an object's position at incremental times during its motion. Such capability now allows users to "examine", rather than simply "assume", energy conservation in a variety of situations commonly discussed in introductory physics courses. This article describes…
Descriptors: Energy Conservation, Physics, Educational Technology, Science Instruction
Peer reviewed Peer reviewed
Kirkup, L. – Physics Education, 1986
Describes the implementation of a trajectory-plotting program for a microcomputer; shows how it may be used to demonstrate the focusing effect of a simple electrostatic lens. The computer program is listed and diagrams are included that show comparisons of trajectories of negative charges in the vicinity of positive charges. (TW)
Descriptors: College Science, Computer Assisted Instruction, Computer Uses in Education, Courseware
Peer reviewed Peer reviewed
Borghi, L.; And Others – Physics Education, 1987
Describes a teaching strategy designed to help high school students learn mechanics by involving them in simple experimental work, observing didactic films, running computer simulations, and executing more complex laboratory experiments. Provides an example of the strategy as it is applied to the topic of projectile motion. (TW)
Descriptors: Audiovisual Aids, Computer Assisted Instruction, Computer Uses in Education, Mechanics (Physics)
Peer reviewed Peer reviewed
McKenzie, J. – Physics Education, 1982
A computer program, making use of interactive computer graphics, has been developed to help students become fluent in the mathematical procedures needed to understand concepts of addition of waves. Background theory, use of the program, and technical and educational features of the program (written in Fortran) are discussed. (Author/JN)
Descriptors: College Science, Computer Assisted Instruction, Computer Graphics, Computer Oriented Programs