NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Pierratos, Theodoros; Polatoglou, Hariton M. – Physics Education, 2020
In this work, we propose an interesting combination of the Atwood machine and Galileo's inclined plane to study quantitatively kinematics with a smartphone and the phyphox app. For this purpose, we use the optical stopwatch function, based on the photosensor of the smartphone. The choice of phyphox app has some advantages for presenting the…
Descriptors: Science Instruction, Physics, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie; Modig, Conny – Physics Education, 2018
An amusement park is full of examples that can be made into challenging problems for students, combining mathematical modelling with video analysis, as well as measurements in the rides. Traditional amusement ride related textbook problems include free-fall, circular motion, pendula and energy conservation in roller coasters, where the moving…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Klieger, Aviva; Goldsmith, Lihi – Physics Education, 2020
The importance of this research is the use of WhatsApp in physics instruction beyond the classroom. This study evaluated the content of conversations in a in a class-wide WhatsApp group of high-school physics students (e.g., the goals of the conversations, topics of conversation, the hours at which conversations were conducted, and who…
Descriptors: Science Instruction, Physics, Computer Oriented Programs, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Christian, Wolfgang; Belloni, Mario; Sokolowska, Dagmara; Cox, Anne; Dancy, Melissa – Physics Education, 2020
Over the past 25 years, the Davidson College Physics Department has developed small computer programs called Physlets. These programs were written in Java and distributed as Java applets embedded in HTML pages. Physics teachers from around the world used Physlets to author interactive computer-based curricular materials for the teaching of…
Descriptors: Science Instruction, Physics, Teaching Methods, Computer Oriented Programs
Peer reviewed Peer reviewed
Davies, H.; McNeill, D. J. – Physics Education, 1985
Describes a microcomputer-based, multichannel digital data acquisition system for acoustic signals. Hardware and software considerations are included. (JN)
Descriptors: Acoustics, College Science, Computer Oriented Programs, Computer Software
Peer reviewed Peer reviewed
Bennett, J. W.; And Others – Physics Education, 1972
Descriptors: Atomic Structure, Computer Graphics, Computer Oriented Programs, Computer Programs
Peer reviewed Peer reviewed
Kirkman, John; Knaggs, David – Physics Education, 1982
Describes a microcomputer-controlled system which determines the current/voltage characteristics of a resistor, lamp, and diode, detailing system elements, construction, and providing printout of the program developed to provide control and arithmetic functions necessary to complete the experiment. (SK)
Descriptors: Computer Oriented Programs, Computer Programs, Electric Circuits, Electricity
Peer reviewed Peer reviewed
Physics Education, 1985
Describes: (1) two experiments using a laser (resonant cavity for light and pinhole camera effect with a hologram); (2) optical differaction patterns displayed by microcomputer; and (3) automating the Hall effect (with comments on apparatus needed and computer program used); and (4) an elegant experiment in mechanical equilibrium. (JN)
Descriptors: College Science, Computer Oriented Programs, Computer Software, Higher Education
Peer reviewed Peer reviewed
Hoon, S. R.; Tanner, B. K. – Physics Education, 1981
Suggests using musical instruments to demonstrate physics concepts. Topics include: pitch and frequency; string vibrations; string-resonator system; wind instruments; harmonic content; transients; scales and temperament; psycho-acoustical affects; and electronic music. (SK)
Descriptors: College Science, Computer Oriented Programs, Higher Education, Microcomputers
Peer reviewed Peer reviewed
Howard, Edgar; Howard, Peter – Physics Education, 1985
Describes the Interactive Microcomputer Peripheral (including major features, source, and current cost) and physics experiments using the instrument. The instrument can also be used for such purposes as counting, timing, and frequency measurement as well as for experiments in biology and experimental psychology. (JN)
Descriptors: College Science, Computer Oriented Programs, Electronic Equipment, Higher Education
Peer reviewed Peer reviewed
Sparkes, Bob – Physics Education, 1981
Describes the use of microcomputers in data acquisition and simulation of physical phenomena. Discusses digital and analog inputs/outputs, simulations, and interactive programs in mechanics. Includes examples of computer programs. (SK)
Descriptors: College Science, Computer Oriented Programs, Computer Programs, Higher Education
Peer reviewed Peer reviewed
Cochrane, T. – Physics Education, 1989
Described are developments in medical electronics and physiological measurement. Discussed are electrocardiology, audiology, and urology as mature applications; applied potential tomography, magnetic stimulation of nerves, and laser Doppler flowmetry as new techniques; and optical sensors, ambulatory monitoring, and biosensors as future…
Descriptors: College Science, Computer Oriented Programs, Electronics, Higher Education
Peer reviewed Peer reviewed
Harrison, R. M. – Physics Education, 1989
Discussed are technological advances applying computer techniques for image acquisition and processing, including digital radiography, computed tomography, and nuclear magnetic resonance imaging. Several diagrams and pictures showing the use of each technique are presented. (YP)
Descriptors: College Science, Computer Oriented Programs, Higher Education, Medical Evaluation
Peer reviewed Peer reviewed
McKenzie, J. – Physics Education, 1982
A computer program, making use of interactive computer graphics, has been developed to help students become fluent in the mathematical procedures needed to understand concepts of addition of waves. Background theory, use of the program, and technical and educational features of the program (written in Fortran) are discussed. (Author/JN)
Descriptors: College Science, Computer Assisted Instruction, Computer Graphics, Computer Oriented Programs