NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Education, 2019
This paper is a continuation of an earlier discussion in this journal about adhering to principles of mathematics while presenting function graphs in physics. As in the previous paper, the importance of the vertical line test was examined, this paper delves more in-depth, and it pinpoints a need for presenting graphs with a continuous rate of…
Descriptors: Graphs, Physics, Mathematics Education, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Tabor-Morris, A. E. – Physics Education, 2020
Introductory physics students often express fears regarding graphical vector addition. To ameliorate student trepidation of possibly making a mistake when moving the second vector to its new position at the head of the first vector before being added, as is most often advised by physics teachers, an alternative method is detailed here. This subtly…
Descriptors: Physics, Science Instruction, Student Attitudes, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
dos Santos, Paulo José Sena; dos Santos, Toni Fernando Mendes – Physics Education, 2021
Many researches show that students have difficulties in understanding graphics in kinematics. Some authors argue that we can use different instructional strategies to reduce these difficulties. Based on these studies, we developed and applied a didactic sequence using educational robotics to teach graphic analysis in movements in a dimension with…
Descriptors: Teaching Methods, Physics, Science Education, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Balaton, M. C.; Da Silva, L. F.; Carvalho, P. S. – Physics Education, 2020
In this paper, we aim to show strategies for improving graph interpretation skills at middle and high school students using OZOBOT® BIT, a small and relatively low-cost programmable robot which had been used to teach programming to young children. OZOBOT's speed can be controlled by drawing lines with colour codes, as well as through a visual…
Descriptors: Middle School Students, High School Students, Skill Development, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Çoban, Atakan; Çoban, Niyazi – Physics Education, 2020
In this study, the spring constant was determined within the scope of Hooke's law. For this purpose, an Arduino MEGA, an HC-SR04 Ultrasonic Distance Sensor, and a 1 kg Load Cell Mass Sensor was used. Sensors and microprocessor are mounted on a plane. One end of the spring is mounted on the force sensor, and a wooden rod, perceived by the distance…
Descriptors: Physics, Science Instruction, Teaching Methods, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Atkin, Keith – Physics Education, 2019
This paper was inspired by the work of a previous contributor on the subject of modelling plague epidemiology by comparing it to the physics of series radioactive decay, RC transients, and fluid dynamics. An Arduino-based experiment to illustrate the fluid-dynamical case is described. Attention is drawn to important differences between systems…
Descriptors: Epidemiology, Comparative Analysis, Physics, Radiation
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Iqbal; Kaur, Bikramjeet – Physics Education, 2018
The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave,…
Descriptors: Physics, Science Instruction, Teaching Methods, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Education, 2021
Analysing graphs, formulating covariational relationships, and hypothesizing systems' behaviour have emerged as frequent objectives of contemporary research in physics education. As such, these studies aim to help students achieve these objectives. While a consensus has been reached on the cognitive benefits of emphasizing the structural domain of…
Descriptors: Graphs, Energy, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Kaltcheva, N. T.; Pritzl, B. J. – Physics Education, 2018
Stars are point-source emitters that are the closest to the definition of a blackbody in comparison to all other similar sources of radiation found in nature. Existing libraries on stellar spectra are thus a valuable resource that can be used to introduce the laws of thermal radiation in a classroom setting. In this article we briefly describe…
Descriptors: Radiation, Scientific Concepts, Scientific Principles, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Ferreira, Annalize; Seyffert, Albertus S.; Lemmer, Miriam – Physics Education, 2017
Many students find it difficult to apply certain physics concepts to their daily lives. This is especially true when they perceive a principle taught in physics class as being in conflict with their experience. An important instance of this occurs when students are instructed to ignore the effect of air resistance when solving kinematics problems.…
Descriptors: Computer Graphics, Scientific Concepts, Physics, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Education, 2017
Graphs in physics are central to the analysis of phenomena and to learning about a system's behavior. The ways students handle graphs are frequently researched. Students' misconceptions are highlighted, and methods of improvement suggested. While kinematics graphs are to represent a real motion, they are also algebraic entities that must satisfy…
Descriptors: Graphs, Physics, Science Instruction, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Binek, Slawomir; Kimla, Damian; Jarosz, Jerzy – Physics Education, 2017
We report on the effectiveness of using interactive personal response systems in teaching physics in secondary schools. Our research were conducted over the period of 2013-2016 using the system called clickers. The idea is based on a reciprocal interaction allowing one to ask questions and receive immediate responses from all the students…
Descriptors: Physics, High School Students, Audience Response Systems, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Ng, Chiu-king – Physics Education, 2016
Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…
Descriptors: Problem Solving, Calculus, Motion, Qualitative Research
Peer reviewed Peer reviewed
Direct linkDirect link
Bednarek, Stanislaw – Physics Education, 2014
This article describes the Lissajous generalized figure and the original instrument for its investigation. Two specially prepared electrodynamic loudspeakers--a horizontal and a vertical--cause oscillations in two mirrors. It is possible to precisely control the motion of the mirrors, achieve a high frequency of oscillation and investigate…
Descriptors: Investigations, Physics, Science Activities, Program Descriptions
Peer reviewed Peer reviewed
Direct linkDirect link
Savinainen, A.; Nieminen, P.; Makynen, A.; Viiri, J. – Physics Education, 2013
In this paper, we present materials and teaching ideas utilizing multiple representations in the contexts of kinematics and the force concept. These ideas and materials are substantiated by evidence and can be readily used in teaching with no special training. In addition, we briefly discuss two multiple-choice tests based on physics education…
Descriptors: Mechanics (Physics), Kinetics, Motion, Science Instruction
Previous Page | Next Page »
Pages: 1  |  2