NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wehrbein, William M. – Physics Teacher, 2022
Recognized as one of the most beautiful experiments of all time, the oil drop experiment performed by Robert Millikan and his graduate students (primarily Harvey Fletcher) is a standard in the repertoire of experiments performed by undergraduate physics students. However, "as a teaching lab it does not enjoy a good reputation for three…
Descriptors: Science Experiments, Science Laboratories, Undergraduate Students, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kapp, Sebastian; Thees, Michael; Strzys, Martin P.; Beil, Fabian; Kuhn, Jochen; Amiraslanov, Orkhan; Javaheri, Hamraz; Lukowicz, Paul; Lauer, Frederik; Rheinländer, Carl; Wehn, Norbert – Physics Teacher, 2019
During the last decade the development of modern digital media such as smartphones and tablet computers has enabled new experimental possibilities in STEM education. Besides these now nearly ubiquitous devices, the fields of virtual reality (VR) and augmented reality (AR) also made huge progress and reached education. In this paper we introduce an…
Descriptors: Science Instruction, Secondary School Science, High School Students, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Constans, Eric; Constans, Aileen – Physics Teacher, 2015
The trebuchet has quickly become a favorite project for physics and engineering teachers seeking to provide students with a simple, but spectacular, hands-on design project that can be applied to the study of projectile motion, rotational motion, and the law of conservation of energy. While there have been free trebuchet simulators and range…
Descriptors: Courseware, Computer Simulation, Secondary School Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku – Physics Teacher, 2016
The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…
Descriptors: Optics, Geometric Concepts, Secondary School Science, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Buesing, Mark; Cook, Michael – Physics Teacher, 2013
Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…
Descriptors: Science Instruction, Physics, Educational Technology, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Humphrey, T. E.; Calisa, Vaishnavi – Physics Teacher, 2014
In 1879, in the midst of the debate between English and continental scientists about the nature of cathode rays, William Crookes conducted an experiment in which a small mill or "paddle wheel" was pushed along tracks inside a cathode ray tube (CRT) (similar to that shown in Fig. 1) when connected to a high-voltage induction coil. Crookes…
Descriptors: Demonstrations (Educational), Motion, Scientific Concepts, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo – Physics Teacher, 2012
This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)
Descriptors: Quantum Mechanics, Secondary School Science, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Xie, Charles – Physics Teacher, 2012
Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…
Descriptors: Teaching Methods, Earth Science, Heat, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Gagnon, Michel – Physics Teacher, 2012
Early in the last century, Robert Millikan developed a precise method of determining the electric charge carried by oil droplets. Using a microscope and a small incandescent lamp, he observed the fall of charged droplets under the influence of an electric field inside a small observation chamber. In so doing, Millikan demonstrated the existence of…
Descriptors: Physics, Fuels, Energy, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Wei, Yajun – Physics Teacher, 2012
The topic of waves is one that many high school physics students find difficult to understand. This is especially true when using some A-level textbooks used in the U.K., where the concept of waves is introduced prior to the concept of simple harmonic oscillations. One of the challenges my students encounter is understanding the difference between…
Descriptors: Physics, Science Instruction, High School Students, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
McKagan, Sam – Physics Teacher, 2010
This article describes workshops for high school physics teachers in Uganda on inquiry-based teaching and PhET simulations. I hope it increases awareness of the conditions teachers face in developing countries and inspires others to give similar workshops. This work demonstrates what is possible with some concerted, but not extraordinary, effort.
Descriptors: High Schools, Physics, Workshops, Secondary School Science
Peer reviewed Peer reviewed
Eliason, John C., Jr. – Physics Teacher, 1989
Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)
Descriptors: Computer Simulation, Laboratory Experiments, Laboratory Procedures, Optics
Peer reviewed Peer reviewed
Risley, John S. – Physics Teacher, 1984
Reviews courseware (Apple II) providing laboratory simulations in atomic physics. Although material is not user-friendly and requires some background, the animations are good representations of electron mass, Thompson e/m, Millikan oil-drop, and mass spectrometer. Recommended for classroom demonstration purposes at high school or introductory…
Descriptors: Atomic Theory, College Science, Computer Programs, Computer Simulation
Peer reviewed Peer reviewed
Graef, Jean – Physics Teacher, 1984
Discusses the realities of implementing a computer-assisted program in high school level science classes, offering some practical suggestions for making such a program successful. Also includes information on several software packages for interfacing microcomputers to sensing equipment. (JN)
Descriptors: College Science, Computer Oriented Programs, Computer Simulation, Computer Software
Peer reviewed Peer reviewed
Risley, John S. – Physics Teacher, 1983
Provided is a review of a high school/college level computer program (for Apple microcomputers) which consists of six simulations designed to introduce students to simple harmonic motion. Includes a discussion of the six simulations and such information as time needed, probable classroom use, source, and current cost. (JM)
Descriptors: Acceleration (Physics), College Science, Computer Assisted Instruction, Computer Programs
Previous Page | Next Page »
Pages: 1  |  2