NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ludwig-Petsch, Kim; Hirth, Michael; Kuhn, Jochen – Physics Teacher, 2022
The typical sound of George Lucas' laser blaster in the "Star Wars" series is well known. What does a laser blaster in "Star Wars" sound like, and why? Here we show a simple way to produce this sound by using low-cost lab material, like a spring or a Slinky. Building on the work of Crawford, who analyzed the sound of a Slinky…
Descriptors: Science Instruction, Physics, Lasers, Acoustics
Peer reviewed Peer reviewed
Direct linkDirect link
Niu, Zeyu Jason; Luo, Duanbin – Physics Teacher, 2022
In recent years, with the more powerful functions of smartphones, the use of sensors integrated by mobile phones as an auxiliary tool for physical experiment teaching has become more popular. Combined with the related mobile phone apps, people easily can develop and expand the physical experiment contents of mechanics, optics, acoustic phenomena,…
Descriptors: Measurement, Science Instruction, Physics, Acoustics
Peer reviewed Peer reviewed
Direct linkDirect link
Allen, Thomas; Chally, Alex; Moser, Bradley; Widenhorn, Ralf – Physics Teacher, 2019
The labs presented here build on a simple speed of sound activity and models medical ultrasound imaging by demonstrating how multiple reflections propagate in a closed system. A short sound pulse is emitted into a pipe that is closed at one end and contains one or more partially reflecting surfaces within the pipe. The variety of reflections and…
Descriptors: Physics, Science Instruction, Acoustics, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James – Physics Teacher, 2016
Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two…
Descriptors: Physics, Science Education, Introductory Courses, Audio Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Pathare, Shirish Rajan; Raghavendra, M. K.; Huli, Saurabhee – Physics Teacher, 2017
Recently devices such as the optical mouse of a computer, webcams, Wii remote, and digital cameras have been used to record and analyze different physical phenomena quantitatively. Devices like tablets and smartphones are also becoming popular. Different scientific applications available at Google Play (Android devices) or the App Store (iOS…
Descriptors: Physics, Laboratory Experiments, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Black, Andy Nicholas; Magruder, Robert H. – Physics Teacher, 2017
Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is…
Descriptors: Physics, Introductory Courses, Acoustics, Scientific Research
Peer reviewed Peer reviewed
Direct linkDirect link
Kraftmakher, Yaakov – Physics Teacher, 2014
Nowadays, the use of data-acquisition systems in undergraduate laboratories is routine. Many computer-assisted experiments became possible with the PASCO scientific data-acquisition system based on the 750 Interface and DataStudio software. A new data-acquisition system developed by PASCO includes the 850 Universal Interface and Capstone software.…
Descriptors: Demonstrations (Educational), Undergraduate Students, Computer Oriented Programs, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Vogt, Patrik; Kuhn, Jochen; Muller, Sebastian – Physics Teacher, 2011
This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education. We describe a computer-aided determination of the free-fall acceleration "g" using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects…
Descriptors: Physics, Science Instruction, Telecommunications, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Brazzle, Bob – Physics Teacher, 2011
My unit on sound and waves is embedded within a long-term project in which my high school students construct a musical instrument out of common materials. The unit culminates with a performance assessment: students play the first four measures of "Somewhere Over the Rainbow"--chosen because of the octave interval of the first two notes--in the key…
Descriptors: Acoustics, Physics, Science Instruction, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kraftmakher, Yaakov – Physics Teacher, 2010
Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…
Descriptors: Physics, Acoustics, Science Instruction, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
LoPresto, Michael C. – Physics Teacher, 2008
Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in "The Physics Teacher" aptly demonstrated the use of MacScope in just such a manner as a way to teach Fourier analysis. A logical continuation of this project is to…
Descriptors: Intervals, Music, Audio Equipment, Computers
Peer reviewed Peer reviewed
Direct linkDirect link
Carvalho, Carlos C.; dos Santos, J. M. B. Lopes; Marques, M. B. – Physics Teacher, 2008
Most homes in developed countries have a sophisticated data acquisition board, namely the PC sound board. Designed to be able to reproduce CD-quality stereo sound, it must have a sampling rate of at least 44 kHz and have very accurate timing between the two stereo channels. With a very simple adaptation of a pair of regular PC microphones, a…
Descriptors: Computer Software, Science Instruction, Computer Uses in Education, Acoustics
Peer reviewed Peer reviewed
Direct linkDirect link
Moran, Timothy – Physics Teacher, 2007
The physics of sound is often studied in introductory physics class experiments involving a tube of resonating air. In typical setups, pistons control the length of a cylindrical space or a microphone is moved within a tube. While these activities are useful and can be made very quantitative, they don't directly demonstrate the sounds that are…
Descriptors: Physics, Acoustics, Science Instruction, Introductory Courses