NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 60 results Save | Export
Sonu Jose – ProQuest LLC, 2020
Bayesian network is a probabilistic graphical model that has wide applications in various domains due to its peculiarity of knowledge representation and reasoning under uncertainty. This research aims at Bayesian network structure learning and how the learned model can be used for reasoning. Learning the structure of Bayesian network from data is…
Descriptors: Bayesian Statistics, Models, Simulation, Algorithms
Yin, Steven – ProQuest LLC, 2022
This thesis studies four independent resource allocation problems with different assumptions on information available to the central planner, and strategic considerations of the agents present in the system. We start off with an online, non-strategic agents setting in Chapter 1, where we study the dynamic pricing and learning problem under the…
Descriptors: Electronic Learning, Resource Allocation, Educational Planning, Educational Strategies
Briana Hennessy – ProQuest LLC, 2021
State-wide tests are designed to measure student overall ability on grade-level standards. School leaders want fine-grained information on student performance to inform curriculum and instruction. One currently used target scoring method, which compares student scores to expected values is currently used to give this feedback to schools, but there…
Descriptors: Standardized Tests, Academic Standards, Academic Ability, Scoring
Nsowaa, Bright – ProQuest LLC, 2018
Several statistical models have been developed in educational measurement to determine and track the performance of students in longitudinal studies. An example of a model designed for such purpose is the latent transition analysis (LTA) model. The LTA model (Graham, Collins, Wugalter, Chung, & Hansen 1991) is a type of autoregressive model…
Descriptors: Measurement, Statistical Analysis, Models, Longitudinal Studies
Beth A. Perkins – ProQuest LLC, 2021
In educational contexts, students often self-select into specific interventions (e.g., courses, majors, extracurricular programming). When students self-select into an intervention, systematic group differences may impact the validity of inferences made regarding the effect of the intervention. Propensity score methods are commonly used to reduce…
Descriptors: Probability, Causal Models, Evaluation Methods, Control Groups
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Peterson, Daniel Wyde – ProQuest LLC, 2019
The objective of this research is to build automated models that emulate VerbNet, a semantic resource for English verbs. VerbNet has been built and expanded by linguists, forming a hierarchical clustering of verbs with common semantic and syntactic expressions, and is useful in semantic tasks. A major drawback is the difficulty of extending a…
Descriptors: Verbs, Semantics, English, Computational Linguistics
Gipson, John A. – ProQuest LLC, 2018
Despite the overwhelming evidence that higher education data are nested at various levels, single-level techniques such as regression and analysis of variance are commonly used to investigate student outcomes. This is problematic as a mismatch in methodology and research questions can lead to biased parameter estimates. The purpose of this study…
Descriptors: Predictor Variables, Graduation, Grade Point Average, Majors (Students)
Pakdaman Naeini, Mahdi – ProQuest LLC, 2016
Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…
Descriptors: Probability, Prediction, Predictor Variables, Models
Yang, Shuo – ProQuest LLC, 2017
With the expeditious advancement of information technologies, health-related data presented unprecedented potentials for medical and health discoveries but at the same time significant challenges for machine learning techniques both in terms of size and complexity. Those challenges include: the structured data with various storage formats and…
Descriptors: Probability, Models, Prediction, Longitudinal Studies
Canan, Mustafa – ProQuest LLC, 2017
Two people in the same situation may ascribe very different meanings to their experiences. They will form different awareness, reacting differently to shared information. Various factors can give rise to this behavior. These factors include, but are not limited to, prior knowledge, training, biases, cultural factors, social factors, team vs.…
Descriptors: Participative Decision Making, Individual Differences, Perspective Taking, Cognitive Processes
Yang, Fan – ProQuest LLC, 2017
There has been a wealth of research conducted on the high school dropouts spanning several decades. It is estimated that compared with those who complete high school, the average high school dropout costs the economy approximately $250,000 more over his or her lifetime in terms of lower tax contributions, higher reliance on Medicaid and Medicare,…
Descriptors: Dropouts, High School Graduates, Statistical Analysis, Risk
Orcan, Fatih – ProQuest LLC, 2013
Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…
Descriptors: Structural Equation Models, Evaluation Methods, Simulation, Sample Size
Funmilayo, Bolonduro, R. – ProQuest LLC, 2016
A quantitative study was conducted to get the perspectives of IT experts about risks in enterprise cloud computing. In businesses, these IT experts are often not in positions to prioritize business needs. The business experts commonly known as business managers mostly determine an organization's business needs. Even if an IT expert classified a…
Descriptors: Risk, Information Technology, Internet, Statistical Analysis
De, Anindya – ProQuest LLC, 2013
The thesis explores efficient learning algorithms in settings which are more restrictive than the PAC model of learning (Valiant) in one of the following two senses: (i) The learning algorithm has a very weak access to the unknown function, as in, it does not get labeled samples for the unknown function (ii) The error guarantee required from the…
Descriptors: Mathematics, Models, Artificial Intelligence, Probability
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4