NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED580534
Record Type: Non-Journal
Publication Date: 2017
Pages: 120
Abstractor: As Provided
ISBN: 978-0-3552-6075-5
ISSN: EISSN-
EISSN: N/A
Available Date: N/A
The Effects of Nucleosome Positioning and Chromatin Architecture on Transgene Expression
Kempton, Colton E.
ProQuest LLC, Ph.D. Dissertation, Brigham Young University
Eukaryotes use proteins to carefully package and compact their genomes to fit into the nuclei of their individual cells. Nucleosomes are the primary level of compaction. Nucleosomes are formed when DNA wraps around an octamer of histone proteins and a nucleosome's position can limit access to genetic regulatory elements. Therefore, nucleosomes represent a basic level of gene regulation. DNA and its associated proteins, called chromatin, is usually classified as euchromatin or heterochromatin. Euchromatin is transcriptionally active with loosely packed nucleosomes while heterochromatin is condensed with tightly packed nucleosomes and is transcriptionally silent. In order to become active, heterochromatin must first be remodeled. We have studied the effects of nucleosome positioning on transgene expression "in vivo" using "Caenorhabditis elegans" as a model. We show that both location and polarity of the DNA sequence can influence transgene expression. We also discuss some considerations for working with CRISPR/Cas9. A major reason for doing "in vitro" nucleosome reconstitutions is to determine the effects of DNA sequence on nucleosome formation and position. It has previously been implied that nucleosome reconstitutions are stochastic and not very reproducible. We show that nucleosome reconstitutions are highly reproducible under our reaction conditions. Our results also indicate that a minimum depth of 35X sequencing coverage be maintained for maximal gains in Pearson's correlation coefficients. Communicating science with others is an important skill for any researcher. The rising generation of scientists need mentors who can teach them how to be independent thinkers who can carry out scientific experiments and communicate their finding to others. With this goal in mind, we have devised a scaffolding pedagogical method to help transform undergraduates into confident independent thinkers and researchers. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com/en-US/products/dissertations/individuals.shtml.]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: Higher Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A