NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Macho, Siegfried; Ledermann, Thomas – Psychological Methods, 2011
The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…
Descriptors: Structural Equation Models, Computation, Comparative Analysis, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Satorra, Albert – Psychological Methods, 2010
When using existing technology, it can be hard or impossible to determine whether two structural equation models that are being considered may be nested. There is also no routine technology for evaluating whether two very different structural models may be equivalent. A simple nesting and equivalence testing (NET) procedure is proposed that uses…
Descriptors: Structural Equation Models, Testing, Simulation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich – Psychological Methods, 2011
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
Descriptors: Simulation, Educational Psychology, Social Sciences, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Psychological Methods, 2008
One of the main objectives in meta-analysis is to estimate the overall effect size by calculating a confidence interval (CI). The usual procedure consists of assuming a standard normal distribution and a sampling variance defined as the inverse of the sum of the estimated weights of the effect sizes. But this procedure does not take into account…
Descriptors: Intervals, Monte Carlo Methods, Meta Analysis, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J. – Psychological Methods, 2007
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
Descriptors: Multivariate Analysis, Computation, Nonparametric Statistics, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Ozechowski, Timothy J.; Turner, Charles W.; Hops, Hyman – Psychological Methods, 2007
This article demonstrates the use of mixed-effects logistic regression (MLR) for conducting sequential analyses of binary observational data. MLR is a special case of the mixed-effects logit modeling framework, which may be applied to multicategorical observational data. The MLR approach is motivated in part by G. A. Dagne, G. W. Howe, C. H.…
Descriptors: Probability, Young Adults, Sampling, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Tonidandel, Scott; Overall, John E. – Psychological Methods, 2004
A split-sample replication criterion originally proposed by J. E. Overall and K. N. Magee (1992) as a stopping rule for hierarchical cluster analysis is applied to multiple data sets generated by sampling with replacement from an original simulated primary data set. An investigation of the validity of this bootstrap procedure was undertaken using…
Descriptors: Computer Software, Sampling, Multivariate Analysis, Computation