NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Voelkle, Manuel C.; Oud, Johan H. L.; Davidov, Eldad; Schmidt, Peter – Psychological Methods, 2012
Panel studies, in which the same subjects are repeatedly observed at multiple time points, are among the most popular longitudinal designs in psychology. Meanwhile, there exists a wide range of different methods to analyze such data, with autoregressive and cross-lagged models being 2 of the most well known representatives. Unfortunately, in these…
Descriptors: Authoritarianism, Intervals, Structural Equation Models, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Tucker-Drob, Elliot M. – Psychological Methods, 2011
Experiments allow researchers to randomly vary the key manipulation, the instruments of measurement, and the sequences of the measurements and manipulations across participants. To date, however, the advantages of randomized experiments to manipulate both the aspects of interest and the aspects that threaten internal validity have been primarily…
Descriptors: Experiments, Research Design, Inferences, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Hayashi, Kentaro – Psychological Methods, 2010
This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…
Descriptors: Structural Equation Models, Data Analysis, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Eid, Michael; Nussbeck, Fridtjof W.; Geiser, Christian; Cole, David A.; Gollwitzer, Mario; Lischetzke, Tanja – Psychological Methods, 2008
The question as to which structural equation model should be selected when multitrait-multimethod (MTMM) data are analyzed is of interest to many researchers. In the past, attempts to find a well-fitting model have often been data-driven and highly arbitrary. In the present article, the authors argue that the measurement design (type of methods…
Descriptors: Structural Equation Models, Multitrait Multimethod Techniques, Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Jorge; De Boeck, Paul; Tuerlinckx, Francis – Psychological Methods, 2008
Structural equation models are commonly used to analyze 2-mode data sets, in which a set of objects is measured on a set of variables. The underlying structure within the object mode is evaluated using latent variables, which are measured by indicators coming from the variable mode. Additionally, when the objects are measured under different…
Descriptors: Structural Equation Models, Data Analysis, Evaluation Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Olsen, Joseph A.; Kenny, David A. – Psychological Methods, 2006
Structural equation modeling (SEM) can be adapted in a relatively straightforward fashion to analyze data from interchangeable dyads (i.e., dyads in which the 2 members cannot be differentiated). The authors describe a general strategy for SEM model estimation, comparison, and fit assessment that can be used with either dyad-level or pairwise…
Descriptors: Structural Equation Models, Data Analysis, Models, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Furlow, Carolyn F.; Beretvas, S. Natasha – Psychological Methods, 2005
Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for…
Descriptors: Rejection (Psychology), Monte Carlo Methods, Least Squares Statistics, Correlation