NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bird, Kevin D. – Psychological Methods, 2011
Any set of confidence interval inferences on J - 1 linearly independent contrasts on J means, such as the two comparisons [mu][subscript 1] - [mu][subscript 2] and [mu][subscript 2] - [mu][subscript 3] on 3 means, provides a basis for the deduction of interval inferences on all other contrasts, such as the redundant comparison [mu][subscript 1] -…
Descriptors: Intervals, Statistical Analysis, Inferences, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Rubin, Donald B. – Psychological Methods, 2010
This article offers reflections on the development of the Rubin causal model (RCM), which were stimulated by the impressive discussions of the RCM and Campbell's superb contributions to the practical problems of drawing causal inferences written by Will Shadish (2010) and Steve West and Felix Thoemmes (2010). It is not a rejoinder in any real…
Descriptors: Causal Models, Research Methodology, Researchers, Profiles
Peer reviewed Peer reviewed
Direct linkDirect link
Morey, Richard D.; Rouder, Jeffrey N. – Psychological Methods, 2011
Psychological theories are statements of constraint. The role of hypothesis testing in psychology is to test whether specific theoretical constraints hold in data. Bayesian statistics is well suited to the task of finding supporting evidence for constraint, because it allows for comparing evidence for 2 hypotheses against each another. One issue…
Descriptors: Evidence, Intervals, Testing, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Tryon, Warren W.; Lewis, Charles – Psychological Methods, 2008
Evidence of group matching frequently takes the form of a nonsignificant test of statistical difference. Theoretical hypotheses of no difference are also tested in this way. These practices are flawed in that null hypothesis statistical testing provides evidence against the null hypothesis and failing to reject H[subscript 0] is not evidence…
Descriptors: Intervals, Testing, Effect Size, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Steiger, James H. – Psychological Methods, 2004
This article presents confidence interval methods for improving on the standard F tests in the balanced, completely between-subjects, fixed-effects analysis of variance. Exact confidence intervals for omnibus effect size measures, such as or and the root-mean-square standardized effect, provide all the information in the traditional hypothesis…
Descriptors: Intervals, Effect Size, Statistical Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Charles, Eric P. – Psychological Methods, 2005
The correction for attenuation due to measurement error (CAME) has received many historical criticisms, most of which can be traced to the limited ability to use CAME inferentially. Past attempts to determine confidence intervals for CAME are summarized and their limitations discussed. The author suggests that inference requires confidence sets…
Descriptors: Error of Measurement, Error Correction, Intervals, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wai; Chan, Daniel W.-L. – Psychological Methods, 2004
The standard Pearson correlation coefficient is a biased estimator of the true population correlation, ?, when the predictor and the criterion are range restricted. To correct the bias, the correlation corrected for range restriction, r-sub(c), has been recommended, and a standard formula based on asymptotic results for estimating its standard…
Descriptors: Computation, Intervals, Sample Size, Monte Carlo Methods