NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Michael D.; Pooley, James P. – Psychological Review, 2013
The scale-invariant memory, perception, and learning (SIMPLE) model developed by Brown, Neath, and Chater (2007) formalizes the theoretical idea that scale invariance is an important organizing principle across numerous cognitive domains and has made an influential contribution to the literature dealing with modeling human memory. In the context…
Descriptors: Recall (Psychology), Memory, Models, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Gershman, Samuel J.; Blei, David M.; Niv, Yael – Psychological Review, 2010
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…
Descriptors: Conditioning, Statistical Inference, Inferences, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Steyvers, Mark; Tenenbaum, Joshua B. – Psychological Review, 2007
Processing language requires the retrieval of concepts from memory in response to an ongoing stream of information. This retrieval is facilitated if one can infer the gist of a sentence, conversation, or document and use that gist to predict related concepts and disambiguate words. This article analyzes the abstract computational problem…
Descriptors: Language Processing, Information Retrieval, Fundamental Concepts, Syntax
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Michael D.; Wagenmakers, Eric-Jan – Psychological Review, 2005
This paper comments on the response offered by Trafimow on Lee and Wagenmakers comments on Trafimow's original article. It seems our comment should have made it clear that the objective Bayesian approach we advocate views probabilities neither as relative frequencies nor as belief states, but as degrees of plausibility assigned to propositions in…
Descriptors: Researchers, Probability, Statistical Inference, Bayesian Statistics