NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Hongjing; Chen, Dawn; Holyoak, Keith J. – Psychological Review, 2012
How can humans acquire relational representations that enable analogical inference and other forms of high-level reasoning? Using comparative relations as a model domain, we explore the possibility that bottom-up learning mechanisms applied to objects coded as feature vectors can yield representations of relations sufficient to solve analogy…
Descriptors: Inferences, Thinking Skills, Comparative Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hills, Thomas T.; Hertwig, Ralph – Psychological Review, 2012
Gonzalez and Dutt (2011) recently reported that trends during sampling, prior to a consequential risky decision, reveal a gradual movement from exploration to exploitation. That is, even when search imposes no immediate costs, people adopt the same pattern manifest in costly search: early exploration followed by later exploitation. From this…
Descriptors: Decision Making, Models, Inferences, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J. – Psychological Review, 2010
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…
Descriptors: Models, Cognitive Processes, Psychology, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Katsikopoulos, Konstantinos V.; Schooler, Lael J.; Hertwig, Ralph – Psychological Review, 2010
Heuristics embodying limited information search and noncompensatory processing of information can yield robust performance relative to computationally more complex models. One criticism raised against heuristics is the argument that complexity is hidden in the calculation of the cue order used to make predictions. We discuss ways to order cues…
Descriptors: Heuristics, Computer Simulation, Cues, Prediction