NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Kiers, Henk A. L.; Groenen, Patrick – Psychometrika, 1996
An iterative majorization algorithm is proposed for orthogonal congruence rotation that is guaranteed to converge from every starting point. In addition, the algorithm is easier to program than the algorithm proposed by F. B. Brokken, which is not guaranteed to converge. The derivation of the algorithm is traced in detail. (SLD)
Descriptors: Algorithms, Comparative Analysis, Matrices, Orthogonal Rotation
Peer reviewed Peer reviewed
Waller, Niels G.; Kaiser, Heather A.; Illian, Janine B.; Manry, Mike – Psychometrika, 1998
The classification capabilities of the one-dimensional Kohonen neural network (T. Kohonen, 1995) were compared with those of two partitioning and three hierarchical cluster methods in 2,580 data sets with known cluster structure. Overall, the performance of the Kohonen networks was similar to, or better than, that of the others. Implications for…
Descriptors: Algorithms, Classification, Cluster Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Spence, Ian; Domoney, Dennis W. – Psychometrika, 1974
Monte Carlo procedures were used to investigate the properties of a nonmetric multidimensional scaling algorithm when used to scale an incomplete matrix of dissimilarities. Recommendations for users wishing to scale incomplete matrices are made. (Author/RC)
Descriptors: Algorithms, Comparative Analysis, Correlation, Matrices
Peer reviewed Peer reviewed
Cureton, Edward E.; Mulaik, Stanley A. – Psychometrika, 1975
Applications to the Promax Rotation are discussed, and it is shown that these procedures solve Thurstone's hitherto intractable "invariant" box problem as well as other more common problems based on real data. (Author/RC)
Descriptors: Algorithms, Comparative Analysis, Factor Analysis, Factor Structure
Peer reviewed Peer reviewed
Bissett, Randall; Schneider, Bruce – Psychometrika, 1991
The algorithm developed by B. A. Schneider (1980) for analysis of paired comparisons of psychological intervals is replaced by one proposed by R. M. Johnson. Monte Carlo simulations of pairwise dissimilarities and pairwise conjoint effects show that Johnson's algorithm can provide good metric recovery. (SLD)
Descriptors: Algorithms, Comparative Analysis, Computer Simulation, Equations (Mathematics)