NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak – Psychometrika, 2013
We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…
Descriptors: Brain, Diagnostic Tests, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Janoos, Firdaus; Brown, Gregory; Morocz, Istvan A.; Wells, William M., III – Psychometrika, 2013
The neural correlates of "working memory" (WM) in schizophrenia (SZ) have been extensively studied using the multisite fMRI data acquired by the Functional Biomedical Informatics Research Network (fBIRN) consortium. Although univariate and multivariate analysis methods have been variously employed to localize brain responses under differing task…
Descriptors: Brain, Diagnostic Tests, Short Term Memory, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Chen, Jianshen – Psychometrika, 2012
A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for…
Descriptors: Intervals, Bayesian Statistics, Scores, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Ligtvoet, Rudy – Psychometrika, 2012
In practice, the sum of the item scores is often used as a basis for comparing subjects. For items that have more than two ordered score categories, only the partial credit model (PCM) and special cases of this model imply that the subjects are stochastically ordered on the common latent variable. However, the PCM is very restrictive with respect…
Descriptors: Simulation, Item Response Theory, Comparative Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2008
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Descriptors: Structural Equation Models, Bayesian Statistics, Evaluation Methods, Evaluation Research
Peer reviewed Peer reviewed
Lee, Sik-Yum; Song, Xin-Yuan – Psychometrika, 2003
Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)
Descriptors: Bayesian Statistics, Comparative Analysis, Sampling, Structural Equation Models
Peer reviewed Peer reviewed
Fornell, Claes; Rust, Roland T. – Psychometrika, 1989
A Bayesian approach to the testing of competing covariance structures is developed. Approximate posterior probabilities are easily obtained from the chi square values and other known constants. The approach is illustrated using an example that demonstrates how the prior probabilities can alter results concerning the preferred model specification.…
Descriptors: Bayesian Statistics, Chi Square, Comparative Analysis, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Jayanti; Damien, Paul – Psychometrika, 2005
Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Statistical Data
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum – Psychometrika, 2006
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Descriptors: Mathematics, Structural Equation Models, Bayesian Statistics, Goodness of Fit
Peer reviewed Peer reviewed
Ramsay, James O. – Psychometrika, 1989
An alternative to the Rasch model is introduced. It characterizes strength of response according to the ratio of ability and difficulty parameters rather than their difference. Joint estimation and marginal estimation models are applied to two test data sets. (SLD)
Descriptors: Ability, Bayesian Statistics, College Entrance Examinations, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2006
By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…
Descriptors: Maximum Likelihood Statistics, Statistical Distributions, Structural Equation Models, Robustness (Statistics)
Peer reviewed Peer reviewed
Tsutakawa, Robert K.; Johnson, Jane C. – Psychometrika, 1990
The conventional method of measuring ability--based on items with assumed true parameter values obtained from a pretest--is compared to a Bayesian method that deals with the uncertainties of such items. Data from a 1987 American College Testing Program mathematics test indicate that maximum likelihood/Bayesian techniques underestimate uncertainty.…
Descriptors: Ability Identification, Bayesian Statistics, College Entrance Examinations, Comparative Analysis