Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 9 |
Descriptor
Bayesian Statistics | 10 |
Computation | 10 |
Models | 8 |
Evaluation Methods | 4 |
Item Response Theory | 4 |
Simulation | 4 |
Data Analysis | 3 |
Comparative Analysis | 2 |
Monte Carlo Methods | 2 |
Observation | 2 |
Psychology | 2 |
More ▼ |
Source
Psychometrika | 10 |
Author
Rouder, Jeffrey N. | 2 |
Ansari, Asim | 1 |
DeSarbo, Wayne S. | 1 |
Duvvuri, Sri Devi | 1 |
Ebbes, Peter | 1 |
Fong, Duncan K. H. | 1 |
Gruca, Thomas S. | 1 |
Hsiung, Chao A. | 1 |
Iyengar, Raghuram | 1 |
Klauer, Karl Christoph | 1 |
Lee, Sik-Yum | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 6 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Magis, David; Raiche, Gilles – Psychometrika, 2012
This paper focuses on two estimators of ability with logistic item response theory models: the Bayesian modal (BM) estimator and the weighted likelihood (WL) estimator. For the BM estimator, Jeffreys' prior distribution is considered, and the corresponding estimator is referred to as the Jeffreys modal (JM) estimator. It is established that under…
Descriptors: Item Response Theory, Computation, Bayesian Statistics, Models
Fong, Duncan K. H.; Ebbes, Peter; DeSarbo, Wayne S. – Psychometrika, 2012
Multiple regression is frequently used across the various social sciences to analyze cross-sectional data. However, it can often times be challenging to justify the assumption of common regression coefficients across all respondents. This manuscript presents a heterogeneous Bayesian regression model that enables the estimation of…
Descriptors: Monte Carlo Methods, Social Sciences, Computation, Models
Ligtvoet, Rudy – Psychometrika, 2012
In practice, the sum of the item scores is often used as a basis for comparing subjects. For items that have more than two ordered score categories, only the partial credit model (PCM) and special cases of this model imply that the subjects are stochastically ordered on the common latent variable. However, the PCM is very restrictive with respect…
Descriptors: Simulation, Item Response Theory, Comparative Analysis, Scores
Duvvuri, Sri Devi; Gruca, Thomas S. – Psychometrika, 2010
Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…
Descriptors: Marketing, Costs, Consumer Economics, Models
Morey, Richard D.; Rouder, Jeffrey N.; Speckman, Paul L. – Psychometrika, 2009
Human abilities in perceptual domains have conventionally been described with reference to a threshold that may be defined as the maximum amount of stimulation which leads to baseline performance. Traditional psychometric links, such as the probit, logit, and "t", are incompatible with a threshold as there are no true scores corresponding to…
Descriptors: Psychometrics, Computation, Item Response Theory, Models
Klauer, Karl Christoph – Psychometrika, 2010
Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…
Descriptors: Simulation, Bayesian Statistics, Computation, Models
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2008
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Descriptors: Structural Equation Models, Bayesian Statistics, Evaluation Methods, Evaluation Research
Rouder, Jeffrey N.; Lu, Jun; Sun, Dongchu; Speckman, Paul; Morey, Richard; Naveh-Benjamin, Moshe – Psychometrika, 2007
The theory of signal detection is convenient for measuring mnemonic ability in recognition memory paradigms. In these paradigms, randomly selected participants are asked to study randomly selected items. In practice, researchers aggregate data across items or participants or both. The signal detection model is nonlinear; consequently, analysis…
Descriptors: Simulation, Recognition (Psychology), Computation, Mnemonics
Ansari, Asim; Iyengar, Raghuram – Psychometrika, 2006
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
Descriptors: Markov Processes, Monte Carlo Methods, Computation, Bayesian Statistics

Lin, Miao-Hsiang; Hsiung, Chao A. – Psychometrika, 1994
Two simple empirical approximate Bayes estimators are introduced for estimating domain scores under binomial and hypergeometric distributions respectively. Criteria are established regarding use of these functions over maximum likelihood estimation counterparts. (SLD)
Descriptors: Adaptive Testing, Bayesian Statistics, Computation, Equations (Mathematics)