NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Hafner, Robert – Psychometrika, 1981
The method proposed by Harman and Fukuda to treat the so-called Heywood case in the minres method in factor analysis (i.e., the case where the resulting communalities are greater than one) involves the frequent solution of eigenvalue problems. A simple method to treat this problem is presented. (Author/JKS)
Descriptors: Algorithms, Data Analysis, Factor Analysis
Peer reviewed Peer reviewed
Klauer, Karl Christoph – Psychometrika, 1989
Concepts of ordinal network representation are discussed. Notation (the type of data that can be represented) and the type of representation given are reviewed. The idea of reduced ordinal networks is explored; and the algorithm, uniqueness results, and error handling problems are presented. Examples of data analysis are included. (SLD)
Descriptors: Algorithms, Data Analysis, Data Interpretation, Graphs
Peer reviewed Peer reviewed
Kiers, Henk A. L.; And Others – Psychometrika, 1990
An algorithm is described for fitting the DEDICOM model (proposed by R. A. Harshman in 1978) for the analysis of asymmetric data matrices. The method modifies a procedure proposed by Y. Takane (1985) to provide guaranteed monotonic convergence. The algorithm is based on a technique known as majorization. (SLD)
Descriptors: Algorithms, Data Analysis, Generalizability Theory, Matrices
Peer reviewed Peer reviewed
Verhelst, N. D. – Psychometrika, 1981
A method for the least squares regression of one squared variable on a second squared variable when the relationship between the original variables is linear is given. The problem arises in multidimensional scaling algorithms. (Author/JKS)
Descriptors: Algorithms, Data Analysis, Multidimensional Scaling, Regression (Statistics)
Peer reviewed Peer reviewed
Brusco, Michael J.; Stahl, Stephanie – Psychometrika, 2001
Describes an interactive procedure for multiobjective asymmetric unidimensional seriation problems that uses a dynamic-programming algorithm to generate partially the efficient set of sequences for small to medium-sized problems and a multioperational heuristic to estimate the efficient set for larger problems. Applies the procedure to an…
Descriptors: Algorithms, Data Analysis, Estimation (Mathematics), Heuristics
Peer reviewed Peer reviewed
Miyano, Hisao; Inukai, Yukio – Psychometrika, 1982
The concept of sequential estimation is introduced in multidimensional scaling. The sequential estimation method developed in this paper refers to continually updating estimates of a configuration as new observations are added. Using artificial data, the performance of this sequential method is illustrated. (Author/JKS)
Descriptors: Algorithms, Data Analysis, Estimation (Mathematics), Multidimensional Scaling
Peer reviewed Peer reviewed
Ferligoj, Anuska; Batagelj, Vladimir – Psychometrika, 1982
Using constraints with cluster analysis limits the possible number of clusters. This paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. Two approaches, along with illustrations, are presented. (Author/JKS)
Descriptors: Algorithms, Cluster Analysis, Data Analysis, Mathematical Models
Peer reviewed Peer reviewed
Desarbo, Wayne S. – Psychometrika, 1982
A general class of nonhierarchical clustering models and associated algorithms for fitting them are presented. These models generalize the Shepard-Arabie Additive clusters model. Two applications are given and extensions to three-way models, nonmetric analyses, and other model specifications are provided. (Author/JKS)
Descriptors: Algorithms, Cluster Analysis, Data Analysis, Mathematical Models
Peer reviewed Peer reviewed
Rindskopf, David – Psychometrika, 1992
A general approach is described for the analysis of categorical data when there are missing values on one or more observed variables. The method is based on generalized linear models with composite links. Situations in which the model can be used are described. (SLD)
Descriptors: Algorithms, Classification, Data Analysis, Estimation (Mathematics)
Peer reviewed Peer reviewed
McClelland, Gary; Coombs, Clyde H. – Psychometrika, 1975
ORDMET is applicable to structures obtained from additive conjoint measurement designs, unfolding theory, general Fechnerian scaling, types of multidimensional scaling, and ordinal multiple regression. A description is obtained of the space containing all possible numerical representations which can satisfy the structure, size, and shape of which…
Descriptors: Algorithms, Computer Programs, Data Analysis, Matrices
Peer reviewed Peer reviewed
Clarkson, D. B.; Jennrich, R. I. – Psychometrika, 1980
A jackknife-like procedure is developed for producing standard errors of estimate in maximum likelihood factor analysis. Unlike earlier methods based on information theory, the procedure developed is computationally feasible on larger problems. Examples are given to demonstrate the feasibility of the method. (Author/JKS)
Descriptors: Algorithms, Data Analysis, Error of Measurement, Factor Analysis
Peer reviewed Peer reviewed
Hubert, Lawrence – Psychometrika, 1973
The intent of this paper is to generalize the min and max clustering procedures in such a way that the assumption of a symmetric similarity measure is unnecessary. (Author)
Descriptors: Algorithms, Cluster Analysis, Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
And Others; Takane, Yoshio – Psychometrika, 1980
An individual differences additive model is discussed which represents individual differences in additivity by differential weighting or additive factors. A procedure for estimating model parameters for various data measurement characteristics is developed. The method is found to be very useful in describing certain types of developmental change…
Descriptors: Algorithms, Data Analysis, Least Squares Statistics, Mathematical Models
Peer reviewed Peer reviewed
Johnson, Richard M. – Psychometrika, 1973
A method of nonmetric multidimensional scaling is described which minimizes pairwise departures from monotonicity. (Author)
Descriptors: Algorithms, Calculus, Computer Programs, Data Analysis