Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 4 |
Descriptor
Data Analysis | 5 |
Heuristics | 5 |
Matrices | 3 |
Computation | 2 |
Psychometrics | 2 |
Algorithms | 1 |
Classification | 1 |
Consumer Economics | 1 |
Estimation (Mathematics) | 1 |
Evaluation Criteria | 1 |
Interaction | 1 |
More ▼ |
Source
Psychometrika | 5 |
Author
Brusco, Michael J. | 3 |
Stahl, Stephanie | 2 |
Aloise, Daniel | 1 |
Blanchard, Simon J. | 1 |
Brusco, Michael | 1 |
DeSarbo, Wayne S. | 1 |
Kohn, Hans-Friedrich | 1 |
Steinley, Douglas | 1 |
Publication Type
Journal Articles | 5 |
Reports - Descriptive | 2 |
Reports - Research | 2 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Brusco, Michael; Steinley, Douglas – Psychometrika, 2011
Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance or non-attendance of individuals at events, the participation or lack of participation of groups in projects, and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling based on structural equivalence, where…
Descriptors: Heuristics, Matrices, Data Analysis, Computation
Blanchard, Simon J.; Aloise, Daniel; DeSarbo, Wayne S. – Psychometrika, 2012
The p-median offers an alternative to centroid-based clustering algorithms for identifying unobserved categories. However, existing p-median formulations typically require data aggregation into a single proximity matrix, resulting in masked respondent heterogeneity. A proposed three-way formulation of the p-median problem explicitly considers…
Descriptors: Matrices, Undergraduate Students, Heuristics, Psychology
Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie – Psychometrika, 2008
Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…
Descriptors: Heuristics, Programming, Data Analysis, Matrices
Brusco, Michael J. – Psychometrika, 2006
Minimization of the within-cluster sums of squares (WCSS) is one of the most important optimization criteria in cluster analysis. Although cluster analysis modules in commercial software packages typically use heuristic methods for this criterion, optimal approaches can be computationally feasible for problems of modest size. This paper presents a…
Descriptors: Multivariate Analysis, Evaluation Criteria, Heuristics, Problem Solving

Brusco, Michael J.; Stahl, Stephanie – Psychometrika, 2001
Describes an interactive procedure for multiobjective asymmetric unidimensional seriation problems that uses a dynamic-programming algorithm to generate partially the efficient set of sequences for small to medium-sized problems and a multioperational heuristic to estimate the efficient set for larger problems. Applies the procedure to an…
Descriptors: Algorithms, Data Analysis, Estimation (Mathematics), Heuristics