Descriptor
Source
Psychometrika | 9 |
Author
McDonald, Roderick P. | 2 |
Bentler, P. N. | 1 |
Braun, Henry I. | 1 |
Freeman, Edward H. | 1 |
Humphreys, Lloyd G. | 1 |
Johnson, Richard M. | 1 |
Montanelli, Richard G. | 1 |
Olkin, Ingram | 1 |
Ramsay, J. O. | 1 |
Stroud, T. W. F. | 1 |
Publication Type
Journal Articles | 4 |
Reports - Research | 4 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Olkin, Ingram – Psychometrika, 1981
It is known that for trivariate distributions, if two correlations are fixed, the remaining correlation is constrained. If just one is fixed, the remaining two are constrained. Both results are extended to the case of a multivariate distribution. (Author/JKS)
Descriptors: Correlation, Data Analysis, Matrices, Multiple Regression Analysis

McDonald, Roderick P.; And Others – Psychometrika, 1979
Problems in avoiding the singularity problem in analyzing matrices for optimal scaling are addressed. Conditions are given under which the stationary points and values of a ratio of quadratic forms in two singular matrices can be obtained by a series of simple matrix operations. (Author/JKS)
Descriptors: Factor Analysis, Matrices, Measurement, Multiple Regression Analysis

Montanelli, Richard G.; Humphreys, Lloyd G. – Psychometrika, 1976
In order to make the parallel analysis criterion for determining the number of factors in factor analysis easy to use, regression equations for predicting the logarithms of the latent roots of random correlation matrices, with squared multiple correlations on the diagonal, are presented. (Author/JKS)
Descriptors: Correlation, Factor Analysis, Matrices, Monte Carlo Methods

Johnson, Richard M. – Psychometrika, 1975
A simple method of monotone regression is described based on the principle of minimizing pairwise departures from monotonicity. (Author)
Descriptors: Analysis of Variance, Goodness of Fit, Matrices, Measurement Techniques

McDonald, Roderick P. – Psychometrika, 1978
The relationship between the factor structure of a convariance matrix and the factor structure of a partial convariance matrix when one or more variables are partialled out of the original matrix is given in this brief note. (JKS)
Descriptors: Analysis of Covariance, Correlation, Factor Analysis, Factor Structure

Bentler, P. N.; Freeman, Edward H. – Psychometrika, 1983
Interpretations regarding the effects of exogenous and endogenous variables on endogenous variables in linear structural equation systems depend upon the convergence of a matrix power series. The test for convergence developed by Joreskog and Sorbom is shown to be only sufficient, not necessary and sufficient. (Author/JKS)
Descriptors: Data Analysis, Mathematical Models, Matrices, Multiple Regression Analysis

Stroud, T. W. F. – Psychometrika, 1974
Descriptors: Achievement Tests, Analysis of Covariance, Matrices, Multiple Regression Analysis

Ramsay, J. O. – Psychometrika, 1975
Many data analysis problems in psychology may be posed conveniently in terms which place the parameters to be estimated on one side of an equation and an expression in these parameters on the other side. A rule for improving the rate of convergence of the iterative solution of such equations is developed and applied to four problems. (Author/RC)
Descriptors: Computer Programs, Data Analysis, Factor Analysis, Individual Differences

Braun, Henry I.; And Others – Psychometrika, 1983
Empirical Bayes methods are shown to provide a practical alternative to standard least squares methods in fitting high dimensional models to sparse data. An example concerning prediction bias in educational testing is presented as an illustration. (Author)
Descriptors: Bayesian Statistics, Educational Testing, Goodness of Fit, Mathematical Models