NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Wang, Lijuan – Psychometrika, 2013
Despite wide applications of both mediation models and missing data techniques, formal discussion of mediation analysis with missing data is still rare. We introduce and compare four approaches to dealing with missing data in mediation analysis including list wise deletion, pairwise deletion, multiple imputation (MI), and a two-stage maximum…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Simulation, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Zhang, Zhiyong – Psychometrika, 2012
The paper develops a two-stage robust procedure for structural equation modeling (SEM) and an R package "rsem" to facilitate the use of the procedure by applied researchers. In the first stage, M-estimates of the saturated mean vector and covariance matrix of all variables are obtained. Those corresponding to the substantive variables…
Descriptors: Structural Equation Models, Tests, Federal Aid, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai – Psychometrika, 2009
When data are not missing at random (NMAR), maximum likelihood (ML) procedure will not generate consistent parameter estimates unless the missing data mechanism is correctly modeled. Understanding NMAR mechanism in a data set would allow one to better use the ML methodology. A survey or questionnaire may contain many items; certain items may be…
Descriptors: Structural Equation Models, Effect Size, Data, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Joreskog, Karl G. – Psychometrika, 1994
Estimation of polychoric correlations is seen as a special case of the theory of parametric inference in contingency tables. the asymptotic covariance matrix of the estimated polychoric correlations is derived for the case when thresholds are estimated from univariate marginals and polychoric correlations are estimated from bivariate marginals for…
Descriptors: Equations (Mathematics), Estimation (Mathematics), Maximum Likelihood Statistics, Structural Equation Models
Peer reviewed Peer reviewed
van Buuren, Stef – Psychometrika, 1997
This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)
Descriptors: Computer Software, Goodness of Fit, Maximum Likelihood Statistics, Structural Equation Models
Peer reviewed Peer reviewed
Lee, Sik-Yum; Zhu, Hong-Tu – Psychometrika, 2002
Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Maximum Likelihood Statistics, Simulation
Peer reviewed Peer reviewed
Dolan, Conor V.; van der Maas, Han L. J. – Psychometrika, 1998
Discusses fitting multivariate normal mixture distributions to structural equation modeling. The model used is a LISREL submodel that includes confirmatory factor and structural equation models. Two approaches to maximum likelihood estimation are used. A simulation study compares confidence intervals based on the observed information and…
Descriptors: Goodness of Fit, Maximum Likelihood Statistics, Multivariate Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Jiajuan; Bentler, Peter M. – Psychometrika, 2004
Maximum likelihood is an important approach to analysis of two-level structural equation models. Different algorithms for this purpose have been available in the literature. In this paper, we present a new formulation of two-level structural equation models and develop an EM algorithm for fitting this formulation. This new formulation covers a…
Descriptors: Structural Equation Models, Mathematics, Maximum Likelihood Statistics, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Chan, Wai – Psychometrika, 2005
The normal theory based maximum likelihood procedure is widely used in structural equation modeling. Three alternatives are: the normal theory based generalized least squares, the normal theory based iteratively reweighted least squares, and the asymptotically distribution-free procedure. When data are normally distributed and the model structure…
Descriptors: Mathematical Concepts, Structural Equation Models, Least Squares Statistics, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew – Psychometrika, 2004
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
Descriptors: Psychometrics, Structural Equation Models, Item Response Theory, Predictor Variables
Peer reviewed Peer reviewed
Lee, Sik-Yum; And Others – Psychometrika, 1990
A computationally efficient three-stage estimator of thresholds and covariance structure parameters is prepared for analysis of structural equation models with polytomous variables. The method is based on partition maximum likelihood and generalized least squares estimation. An analysis of questionnaire responses of 739 young adults illustrates…
Descriptors: Equations (Mathematics), Estimation (Mathematics), Least Squares Statistics, Mathematical Models
Peer reviewed Peer reviewed
Lee, Sik-Yum; And Others – Psychometrika, 1992
A two-stage approach based on the rationale of maximum likelihood and generalized least-squares methods is developed to analyze the general structural equation model for continuous and polytomous variables. Some illustrative examples and a small simulation study (50 replications) are reported. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Least Squares Statistics, Mathematical Models
Peer reviewed Peer reviewed
Meredith, William; Tisak, John – Psychometrika, 1990
A model based on latent trait theory, with maximum likelihood parameter estimates and associated asymptotic tests, is presented. Latent curve analysis is a method for representing development and is an alternative to repeated measures analysis of variance and first-order auto-regressive models. (SLD)
Descriptors: Analysis of Variance, Estimation (Mathematics), Item Response Theory, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2006
By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…
Descriptors: Maximum Likelihood Statistics, Statistical Distributions, Structural Equation Models, Robustness (Statistics)